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Abstract. The long line of research in probabilistic model checking has
resulted in efficient symbolic verification engines. Nevertheless, scalabil-
ity is still a key concern. In this paper we ask two questions. First, can we
lift, to the probabilistic world, successful hardware verification techniques
that exploit local variable dependencies in the analyzed model? And sec-
ond, will those techniques lead to significant performance improvement
on models with such structure, such as dynamic Bayesian networks?

To the first question we give a positive answer by proposing a probabilis-
tic model checking approach based on factored symbolic representation of
the transition probability matrix of the analyzed model. Our experimen-
tal evaluation on several benchmarks designed to favour this approach
answers the second question negatively. Intuitively, the reason is that
the effect of techniques for reducing the size of BDD-based symbolic rep-
resentations do not carry over to quantitative symbolic data structures.
More precisely, the size of MTBDDs depends not only on the number of
variables but also on the number of different terminals they have (which
influences sharing), and which is not reduced by these techniques.

1 Introduction

Probabilistic model checking is a formal technique for analyzing finite-state mod-
els of systems that exhibit randomized behaviour against (quantitative) temporal
specifications. Model checking tools, such as PRISM [13], have been successfully
applied to a variety of systems, such as randomized distributed protocols, bio-
logical processes, and randomized algorithms for leader election.

State-of-the-art probabilistic model checkers such as PRISM implement sym-
bolic model checking algorithms on top of data structures such as BDDs and
MTBDDs [16]. It is well known that these data structures allow efficient sharing
of state within the model checker and offer significant benefits in time and space
requirements for model checking large probabilistic systems.

However, the scalability of automatic probabilistic verification remains to be
a concern. A natural question is whether the structure of the probabilistic model
can be exploited to provide further optimizations in state storage during model
checking. For example, consider probabilistic models that exhibit local depen-
dencies, where variables depend on a small number of “neighboring” variables.



Such local structure is common and natural in distributed algorithms and net-
works, in which a process communicates only with its immediate neighbours. In
this setting the model can be described in a factored representation such as a
Bayesian network that captures these local dependencies. Current approaches to
probabilistic model checking do not benefit from the structure of the analyzed
models, as this is typically lost during the translation into the verifier’s internal
representation as a monolithic BDD or MTBDD. Exploiting structure is identi-
fied as one of the rules of thumb in symbolic probabilistic verification [12], but
most implementations only consider simple variable ordering heuristics.

In hardware model checking, one way to exploit structure is to retain the
transition relation of a circuit in partitioned fashion [6]. Instead of computing
a monolithic transition relation as a conjunction of BDDs representing modules
executing in parallel, partitioned representations maintain a list of BDDs for each
module. During successor computation, partitioned BDDs are manipulated one
at a time using early quantification, which keeps the size of intermediate BDDs
small. Partitioned approaches have been used with great success to reduce state
space explosion in symbolic model checking, often by orders of magnitude [7]. It
is thus natural to ask if these techniques can be successfully extended and applied
to improve the efficiency of the verification of factored probabilistic models.

This is the question which we study in this paper. We have implemented a
model checker for PCTL for factored probabilistic models. It accepts factored
probabilistic models, in the form of dynamic Bayesian networks. These models
admit a natural straightforward factored symbolic representation of their transi-
tion matrices. Our model checker uses a partitioned representation of the transi-
tion matrices as sets of MTBDDs. We extend matrix-vector multiplication based
on MTBDDs to use partitioned representations of the transition probability ma-
trix. Furthermore, we show that this procedure can be seamlessly integrated in
the power method for iteratively solving systems of linear equations, which lies
at the core of quantitative PCTL model checking [3, 2].

We experimentally compare the performance of PCTL model checking using
partitioned versus monolithic representations on a set of scalable benchmarks
that exhibit local structure. We compare our implementation against an equiv-
alent implementation that uses a global, non-partitioned transition relation (to
ensure we only capture the effect of monolithic vs. partitioned representations
and do not confound our results with orthogonal heuristics). We also compare
against the PRISM model checker to ensure our global representation-based im-
plementation is comparable to the state-of-the-art.

Unfortunately, our results in the quantitative setting are negative. While
qualitative PCTL model checking inherits the benefits of partitioned non-
probabilistic model checking, we show that even on factored models, quantitative
model checking does not significantly benefit from partitioned representations.
On all but the simplest examples and properties, computing the matrix vec-
tor product on the factored representation using early variable elimination (the
quantitative analogue of early quantification) does not help: while the number of
variables in the MTBDD does decrease, the intermediate products have a large



number of constant terms as terminal nodes. This decreases the amount of shar-
ing, consequently not reducing the size of the MTBDD. Overall, for quantitative
specifications, partitioned representations and early variable elimination does
not significantly improve run times or memory requirements over global repre-
sentations. (Although, some improvement is seen on the simplest examples.)

Our negative observations carry over to different structures of the dependency
graph: linear, tree, and grid topologies. The tree and grid topologies specifically
were chosen to be difficult for the classical methods as there is no natural variable
ordering facilitating MTBDD reasoning. With the exception of particularly easy
properties that only refer to a small part of the model, these examples turned
out to be hard even for the approach using the partitioned transition relation.

While our experimental results are negative, we consider them an important
contribution to the research landscape in probabilistic verification. Partitioning
is an intuitive heuristic, and works well in non-probabilistic settings. Our ob-
jective was to evaluate if it can be easily and naturally applied to improve the
performance of probabilistic reasoning. It was surprising to us that it does not
improve quantitative model checking, but to the best of our knowledge, no prior
experimental comparison pointed this out. We hope that our results, showing
which avenues have turned out unsuccessful, will be valuable to others aiming
to improve the efficiency of probabilistic verification.

Related work. Several lines of work have investigated connections between
model checking of temporal properties and inference in dynamic Bayesian net-
works. In [14] model checking techniques are used to perform inference in dy-
namic Bayesian networks for queries specified in probabilistic CTL. There, a
dynamic Bayesian network is converted to probabilistic reactive modules, which
are in turn encoded as an MTBDD by the PRISM model checker. Their approach
does not modify the internal data structures and algorithms of the probabilistic
model checker to make use of the model’s structure. In [15], inference techniques
are used to perform approximate model checking of dynamic Bayesian networks
against finite-horizon probabilistic linear temporal properties.

2 Probabilistic Model Checking

2.1 Probabilistic Models and Temporal Logics

A discrete-time Markov chain (DTMC) is a tuple M = (S, P,AP , L), where S
is a finite set of states, P : S × S → [0, 1] is a transition probability function,
such that

∑
s′∈S P (s, s′) = 1 for every state s ∈ S, AP is a finite set of atomic

propositions, and L : S → 2AP is a labelling function mapping each state to the
set of propositions that hold true in it. The transition probability function P
can be interpreted as a |S| × |S| real matrix, where |S| is the number of states.

A path in M is a finite or infinite sequence s0, s1, . . . of states in S such that
for each i it holds that P (si, si+1) > 0. Given a state s ∈ S, we denote with
Paths(M, s) the set of paths in M originating in the state s.



We now recall the syntax of Probabilistic Computation Tree Logic (PCTL).
We fix a set AP of atomic propositions. The set of PCTL formulas over AP con-
sists of two types of formulas: state formulas and path formulas. State formulas
are formed according to the grammar Φ ::= tt | a | Φ1 ∧Φ2 | ¬Ψ | PJ(ϕ),
where a ∈ AP , Φ1, Φ2 and Ψ are state formulas, J ⊆ [0, 1] is a real in-
terval, and ϕ is a path formula. Path formulas are defined by the grammar
ϕ ::= ©Φ | Φ1 U Φ2 | Φ1 U≤k Φ2, where Φ,Φ1 and Φ2 are state for-
mulas, and k ∈ N. As usual, we define the derived operators ♦ϕ = ttU ϕ and
�ϕ = ¬♦¬ϕ. The qualitative fragment of PCTL restricts the interval J in the
probability operator PJ to the cases P=1 = P[1,1] and P=0 = P[0,0].

The semantics of PCTL with respect to Markov chains is defined as follows.
Let M = (S, P,AP , L) be a DTMC. Then, PCTL state formulas are interpreted
over states of M , while path formulas are interpreted over paths. The satis-
faction relations |= are defined as usual for assertions, Boolean and temporal
operators [3]. Formulas containing the probability operator P are interpreted us-
ing a probability measure over sets of paths. More specifically, the satisfaction of
PJ(ϕ) in a state s is determined by the probability measure of the set of paths
Πϕ = {π ∈ Paths(M, s) | M,π |= ϕ}, for which it is known that it is measur-
able. More precisely, with each DTMC M and state s in M we can associate a
probability measure PrMs such that for every path formula ϕ the set of paths
Πϕ is measurable [3]. Then, we define M, s |= PJ(ϕ) iff PrMs (Πϕ) ∈ J .

It is well known that for the satisfaction of qualitative PCTL formulas in
a finite-state DTMC M = (S, P,AP , L) the precise values of the probabilities
assigned by P do not play a role. We thus define the transition relation function
T : S × S → {0, 1} such that for s, s′ ∈ S we have T (s, s′) = 1 iff P (s, s′) > 0.
This defines the graph GM = (S,E) corresponding to M , with vertices the states
of M , and set of edges E ⊆ S × S such that (s, s′) ∈ E iff T (s, s′) = 1.

2.2 Probabilistic Model Checking

Given a DTMC M = (S, P,AP , L) and a PCTL state formula Φ, the model
checking problem asks to determine whether M, s |= Φ holds for every s ∈ S.

The model checking problem for PCTL can be solved by computing the set
SatM (Φ) = {s ∈ S |M, s |= Φ} of states in M that satisfy Φ, and then checking
if SatM (Φ) = S. The set SatM (Φ) can be computed recursively in a bottom-up
manner, following the syntax tree of the formula Φ. The key step is computing
the set SatM (Φ) for a formula of the form Φ = PJ(ϕ), where ϕ is a path formula
for which we have already computed SatM (Ψ) for every state subformula Ψ .

If Φ = PJ(©Ψ), we check if (
∑
s′∈SatM (Ψ) P (s, s′)) ∈ J . The probabilities can

be computed by multiplying the probability matrix P with the characteristic
vector of SatM (Ψ), i.e. a vector (bs′)s′∈S with bs′ = 1 iff s′ ∈ SatM (Ψ).

For an until formula ϕ = Φ1 U Φ2 or ϕ = Φ1 U≤k Φ2 we first compute sets
Ŝ=1 ⊆ {s ∈ S | Pr(M, s |= ϕ) = 1} and Ŝ=0 ⊆ {s ∈ S | Pr(M, s |= ϕ) = 0}
such that in the states in Ŝ=1 the formula ϕ is satisfied with probability 1 and
in the states in Ŝ=0 it holds with probability 0. Furthermore we require that
SatM (Φ2) ⊆ Ŝ=1 and that S \ (SatM (Φ1) ∪ SatM (Φ2)) ⊆ Ŝ=0. The remaining



states S? = S \ (Ŝ=1 ∪ Ŝ=0) are the ones for which the probability has to still
be computed. To this end, we define the matrix A = (P (s, s′))s,s′∈S?

, which

restricts P to states in S?, and the vector (bs)s∈S?
, with bs = P (s, Ŝ=1).

The vector (Pr(s |= Φ1 U Φ2))s∈S?
is the least fixed point of the operator

Υ : [0, 1]S? → [0, 1]S? , with Υ (c) = A · c + b. This formulation can be rewritten
into a system of linear equations (I − A) · c = b, where I is the identity matrix

of dimension |S?| × |S?|. Choosing Ŝ=0 to be exactly the set {s ∈ S | Pr(M, s |=
ϕ) = 0} guarantees that this system of equations has a unique solution [3].

For bounded until formulas ϕ = Φ1 U≤k Φ2 we have to take Ŝ=1 = SatM (Φ2),
that is, the set of states that reach Φ2 in zero steps, and can compute the vector
of probabilities (Pr(s |= Φ1 U≤k Φ2))s∈S?

as the vector c(n), where c(0) = (0)s∈S?

and c(i+1) = Υ (c(i)) for i ≥ 0. Finally, SatM (Φ) = {s ∈ S | Pr(M, s |= ϕ) ∈ J}.
Thus, computing the set SatM (Φ) for a quantitative formula Φ = PJ(ϕ) is

reduced to computing the sets SatM (P=1(ϕ)) = {s ∈ S | Pr(M, s |= ϕ) = 1}
and SatM (P=0(ϕ))) = {s ∈ S | Pr(M, s |= ϕ) = 0} for the respective qualitative
formulas and then solving a system of linear equations.

The sets SatM (P=1(ϕ)) and SatM (P=0(ϕ)) do not depend on the exact values
in P and can be computed based on the graph GM = (S,E) associated with M .

The set SatM (P=0(Φ1 U Φ2)) can be computed by first computing the set
of states SatM (P>0(Φ1 U Φ2)) backward reachable from SatM (Φ2) by visit-
ing only states in SatM (Φ1), and then taking SatM (P=0(Φ1 U Φ2)) = S \
SatM (P>0(Φ1 U Φ2)). The bounded until case is analogous.

The set SatM (P=1(Φ1 U Φ2)) can also be computed by backward reachability
in a graph modified as follows. Let G′M = (S,E′) be obtained from GM by mak-
ing all states in the set D = SatM (Φ2)∪ (S \ (SatM (Φ1)∪SatM (Φ2))) absorbing.
That is, (s, s′) ∈ E′ iff s 6∈ D and (s, s′) ∈ E, or s ∈ D and s = s′. Then, as shown
in [3], it holds that SatM (P=1(Φ1 U Φ2)) = S \ Pre∗G′M (S \ (Pre∗G′M (SatM (Φ2)))),

where, Pre∗G′M (U) are the states backward reachable from the set U in G′M .

2.3 Symbolic Model Checking

Let M = (S, P,AP , L) be a DTMC and suppose that X is a set of Boolean
variables such that S = {0, 1}X , i.e., X is a Boolean encoding of S, and the set
AP consists of atomic propositions, one for each variable in X. Let n = |X|, and
as usual, let X ′ = {x′ | x ∈ X} be the set of “next state” variables for X.

The transition probability function P can be encoded as a real valued func-
tion of Boolean vectors ρ : Bn × Bn → R, and the transition relation function
T can be described by a function δ : Bn × Bn → B. Similarly, sets of states and
probability vectors are represented as functions from Bn to B and R, respectively.

In symbolic verification, Boolean functions are often succinctly represented
as reduced ordered binary decision diagrams (BDDs) [5]. Given a fixed total
ordering of the variables in X ∪ X ′, BDDs represent the Boolean functions on
Bn × Bn in a one-to-one manner. There exist efficient methods for computing
existential abstraction, application of Boolean operators and variable renam-
ing using BDDs. The size of the BDD representing a given function is heavily



influenced by the ordering of the variables, and it is well known that finding
an optimal ordering is a hard problem. A commonly used heuristic, which per-
forms quite well in practice, is to interleave non-primed and primed variables
x < x′ < y < y′ < . . ..

In quantitative verification, a generalization of BDDs, called multi-terminal
BDDs (MTBDDs) [8] are used to succinctly represent real-valued functions. The
matrix and vector arithmetic operations used in PCTL model checking can be
efficiently performed on their MTBDD-based representation [10, 1].

Given a fixed variable ordering, the size of the BDD representation of a
Boolean function is influenced by the number of variables on which this function
actually depends. The same holds for MTBDDs, where, in addition, the number
of values in the co-domain of the functions has an impact on the size of the
corresponding MTBDD. In the following subsection we describe a class of prob-
abilistic models, whose structure allows for a factored symbolic representation
of its transition relation and transition probability functions. Such a factored
representation is a collection of BDDs, or respectively MTBDDs, that capture
local dependencies between the variables describing the model, and are, often
significantly smaller than those describing the transitions between global states.

2.4 Dynamic Bayesian Networks

Intuitively, a Bayesian network is a graph-like representation of dependence
conditions on a set of random variables, coupled with some representation of the
distributions associated with these random variables. More formally, a Bayesian
network over a set of variables V is tuple B = (G,Θ), where G = (V,D) is a
directed acyclic graph with vertices the variables in V and set of edges D ⊆ V ×V
describing the dependencies between these variables, and Θ is a set of conditional
probability distributions (CPDs), one for each variable in V , as we now explain.

For a set of variables Y ⊆ V , let Val(Y ) be the set of valuations of the
variables Y , that is, the functions that map each variable y ∈ Y to a value in
its domain Val(y). With PaB(v) = {u ∈ V | (u, v) ∈ D} we denote the set of
parent nodes of v in G. These are the variables on whose value the probability
distribution of v directly depends. More precisely, for each variable v ∈ V the set
Θ contains a CPD Θv|PaB(v) = Pr(v | PaB(v)). When Val(V ) is finite, the CPD
of each variable v is usually represented by a conditional probability table that
maps every valuation in Val(PaB(v)) to a probability distribution over Val(v).

Dynamic Bayesian networks (DBN) describe systems evolving over time. A
DBN over a set of variables V is a two-slice Bayesian network B = (G,Θ) over
V ∪ V ′, where PaB(v) = ∅ for each v ∈ V . That is, the CPDs of the variables V
in B depend on none of the other variables, while the CPDs of the variables in V ′

can depend on variables in both V and V ′. More precisely, since the dependency
graph G is acyclic, the CPD of a next-state variable v′ can depend on the current
values of V as well as on the next-state values of variables different from v.

A DBN B = (G,Θ) over a set of variables V can be seen as a factored
representation of a Markov chain. The DTMC MB = (S, P,AP , L) induced by
B has set of states S = Val(V ). The transition probability function P (s, s′) =



PrB(X ′ = s′ | X = s) is defined according to the probability distribution
described by B. We choose AP = S and define L(s) = {s}.

The model checking problem for dynamic Bayesian networks asks, given a
DBN B = (G,Θ), whose induced DTMC is MB = (S, P,AP , L), and a PCTL
state formula Φ over AP , to determine whether MB , s |= Φ for every s ∈ S.

3 Model Checking Qualitative PCTL

3.1 Factored BDD Representation

Let B = (G,Θ) be a DBN over a set of finite-state variables V . Suppose w.l.o.g.
that for each v ∈ V it holds that |Val(v)| is a power of 2. Then, with each v ∈ V
we associate a set of Boolean variables Xv such that Xv is a Boolean encoding
of Val(v). With X ′v we denote the set of next-state Boolean variables.

Let X =
⋃
v∈V Xv and X ′ =

⋃
v∈V X

′
v. Then, Val(X) are the states of the

DTMC MB = (S, P,AP , L) induced by B, and the transition relation function
of MB can be represented by a BDD δ(X,X ′) over the variables X ∪X ′.

Since each v′ ∈ V ′ depends directly only on PaB(v′), the variables in X ′v
depend directly only on X̂v′ = (

⋃
u∈PaB(v′)∩V Xu) ∪ (

⋃
u∈PaB(v′)∩V ′ X

′
u). We

represent each Θv′|PaB(v′) by a BDD δv(X,X
′), whose support is X ′v ∪ X̂ ′v.

If PaB(v′) = {u1, . . . , uk}, we use (v,u1, . . . ,uk, p) ∈ Θv′|PaB(v′) to denote
the elements of the conditional probability table Θv′|PaB(v′) for v′, i.e., the fact
that that PrB(v′ = v | u1 = u1, u2 = u2, . . . , uk = uk) = p.

For each v ∈ V and v ∈ Val(v), we denote with βv,v(X) the BDD for the
Boolean formula over X equivalent to the atomic predicate v = v. Similarly for
v′ ∈ V ′ we have βv′,v(X ′). Now, for each v ∈ V , we define the BDD δv(X,X

′) =∨
v∈Val(v′)

(
βv′,v(X ′) ∧

∨
(v,u1,...,uk,p)∈Θv|PaB(v)

p>0

(βu1,u1(X) ∧ . . . βuk,uk
(X))

)
.

Proposition 1. For a DBN B = (G,Θ) over variables V with induced DTMC
MB = (S, P,AP , L) whose transition relation is δ it holds that δ =

∧
v∈V δv.

3.2 Image Computation with Factored BDDs

Consider a Boolean formula Ψ(X) that describes a set of states in the DTMC
MB = (S, P,AP , L). The formula Pre(Ψ)(X) = ∃X ′.δ(X,X ′) ∧ Ψ(X ′) describes
the set of states that have a successor in MB which is a Ψ -state. The BDD
describing Pre(Ψ) can be computed by applying the standard conjunction and
existential abstraction operations to the BDDs for δ(X,X ′) and Ψ(X ′).

When δ(X,X ′) is given in the factored form δv1(X,X ′), . . . , δvn(X,X ′),
where V = {v1, . . . , vn}, we can avoid constructing the BDD for the global
transition relation δ, and instead use the partitioned form in the computation of
Pre(Ψ). Depending on the functions δv1(X,X ′), . . . , δvn(X,X ′) and the number
of variables on which each of them depends, their individual size can be much
smaller than the size of δ. Furthermore, since each δv depends only on a subset



of X ′, it is possible that applying early quantification [6] can lead to avoiding a
blow-up of intermediate results during the computation of Pre(Ψ). Such conjunc-
tive partitioning of the transition relation has been successfully used for efficient
forward-image computation in the verification of hardware models [6].

Here we describe the application of this approach to the Pre-image compu-
tation for the DBN B = (G, θ). Let π : {1, . . . , n} → V be an ordering of the
variables in V . We will explain later how to choose a potentially good ordering
based on the dependency graph G of the DBN. For each v ∈ V , let Yv ⊆ X ′ be
the set of variables in X ′ on which δv depends, that is y ∈ Yv iff y ∈ X ′ and
δv[0/y] 6= δv[1/y], where δv[0/y] is the formula obtained from δv by substituting

0 for the variable y. Also, let Zv = Yv\
(⋃n

i=π−1(v)+1 Yπ(i)

)
be the set of variables

in X ′ on which δv depends, but none of δu with π−1(u) > π−1(v) depends on
them. Note that the sets Zv are pairwise disjoint. Then, Pre(Ψ) is computed by:

Ψ1(X,X ′) = ∃Zπ(1)
(
δπ(1)(X,X

′) ∧ Ψ(X ′)
)

Ψ2(X,X ′) = ∃Zπ(2)
(
δπ(2)(X,X

′) ∧ Ψ1(X,X ′)
)

. . .

Ψn(X,X ′) = ∃Zπ(n)
(
δπ(n)(X,X

′) ∧ Ψn−1(X,X ′)
)

Pre(Ψ)(X) = ∃(X ′ \ (
⋃
v∈V

Zv))Ψn(X,X ′).

The ordering π of the variables in X ′ is important, as it determines how many
variables are existentially abstracted at each intermediate step, which can in turn
influence the size of the intermediate BDDs. We now describe a heuristic that
uses the dependency graph G to find a good ordering. Let G′ be the restriction
of G to the nodes V ′. By traversing the graph G′ in post-order we can compute π
such that for every i, j ∈ {1, . . . , n}, if π(i) = v, π(j) = u and there is an edge in
G′ from u to v, then i < j. This allows for eliminating the variables X ′u at step j
of the computation of Pre(Ψ), as none of the transition relations δπ(k) considered
at the subsequent steps k > i depends on X ′u. Additionally, if variables u ∈ V ′
and v ∈ V ′ are mutually unreachable in G′ but |Yu| < |Yv|, then δv will appear
earlier in the ordering, leading to the elimination of more variables.

3.3 Reachability Computation

As we recalled in Section 2, the sets Sat(P=0(Φ1 U Φ2)) and Sat(P=1(Φ1 U Φ2))
can be computed by backward graph reachability starting from Sat(Φ2) in the
(possibly modified) graph GMB

. Here we show how to do that using the factored
symbolic representation of the edge relation in GMB

, constructed as above.

As usual, Sat(P>0(Φ1 U Φ2)) is computed as the least fixpoint µU.Sat(Φ2) ∨
(Pre(U) ∧ Sat(Φ1)), which corresponds to computing the states backward reach-
able from Sat(Φ2) that are in Sat(Φ1). For the computation of Sat(P=1(Φ1 U Φ2)),
instead of restricting the transition relations δv to the set (S\(Sat(Φ1)∪Sat(Φ2))



in order to represent the transition relation of the modified graph, we use the fol-
lowing fixpoint expressions with the unmodified partitioned transition relation:

Ψ(X) = ¬µU.Sat(Φ2) ∨ (Pre(U) ∧ Sat(Φ1) ∧ ¬Sat(Φ2)) ,

Sat(P=1(Φ1 U Φ2)) = ¬µU.Ψ ∨ (Pre(U) ∧ Sat(Φ1) ∧ ¬Sat(Φ2)) .

Next and bounded until formulas are handled in a similar way using the
preimage computation based on the factored transition relation.

4 Model Checking Quantitative PCTL

4.1 Factored MTBDD Representation

Let B = (G,Θ) be a DBN over a set of finite-state variables V , and let the sets
of variables X =

⋃
v∈V Xv and X ′ =

⋃
v∈V X

′
v be as in the previous section. The

transition probability matrix P of the induced DTMC MB = (S, P,AP , L) can
be represented as an MTBDD ρ over the variables X∪X ′. Here we use again the
structure of the DBN and the local dependencies implied by it to give a factored
representation of ρ as the element-wise product of matrices ρv for v ∈ V .

As before, if PaB(v′) = {u1, . . . , uk}, we use (v,u1, . . . ,uk, p) ∈ Θv′|PaB(v′)

to denote the elements of the conditional probability table Θv′|PaB(v′) for v′.
For each v ∈ V and v ∈ Val(v) (respectively v′ ∈ V ′ and v ∈

Val(v′)), we denote with µv,v(X) (respectively µv′,v(X ′)) the MTBDD for
the Boolean formula equivalent to the atomic predicate v = v (respec-
tively v′ = v). For p ∈ R, we denote with µp the MTBDD that maps
each assignment to X ∪ X ′ to the constant p. For each v ∈ V , we de-
fine the MTBDD ρv(X,X

′) =
∑

v∈Val(v′) (µv′,v(X ′) ∗ ψv,v) , where ψv,v =∑
(v,u1,...,uk,p)∈Θv|PaB(v)

p>0

(µp ∗ µu1,u1
(X) ∗ . . . ∗ µuk,uk

(X)), and where + and ∗

denote respectively sum and multiplication of real-valued functions represented
as MTBDDs. Each ρv represents a real matrix whose rows are indexed by
Val(X), and whose columns are indexed by Val(X ′). The matrix ρv describes
the local dependency of the variables X ′v on the remaining variables. The tran-
sition probability matrix of MB is obtained by taking the element-wise product
of the transition probability matrices for the individual variables.

Proposition 2. For a DBN B = (G,Θ) over variables V = {v1, . . . , vn} with
induced DTMC MB = (S, P,AP , L) whose transition probability function is ρ it
holds that ρ = ρv1 ∗ . . . ∗ ρvn .

4.2 Matrix-Vector Multiplication with Factored MTBDDs

Let A(X,X ′) be an MTBDD representing a square real matrix such that Val(X)
are the row indices and Val(X ′) are the column indices. Let b(X) be an MTBDD
representing a real vector with indices Val(X ′). The matrix-vector product c =
Ab can be computed symbolically [1] as c(X) = ∃X ′.A(X,X ′) ∗ b(X ′), where



∗ is the multiplication operation for real-valued functions (MTBDDs) and ∃
is the sum-abstraction. In our case, the transition probability matrix is given
in factored form ρ = ρv1 ∗ . . . ∗ ρvn . Since the element-wise multiplication ∗
is associative and commutative, we can perform matrix-vector multiplication
without computing ρ upfront as ∃X ′.ρv1(X,X ′) ∗ . . . ∗ ρvn(X,X ′) ∗ b(X ′).

Furthermore, as in the previous section we can employ early quantification
whenever possible, trying to reduce the size of intermediate MTBDDs.

As we will see in our experimental results in Section 5, however, in the major-
ity of the cases early quantification does not reduce the size of the intermediate
MTBDDs. Although it might reduce the number of variables the function de-
pends on, existential abstraction may increase the number of terminal nodes,
thus affecting the amount of sharing between subgraphs of the MTBDD.

4.3 Solving Linear Equations

As we recalled in Section 2, model checking quantitative PCTL reduces to com-
puting the satisfaction sets for qualitative formulas and solving systems of linear
equations with real coefficients. Usually, symbolic methods based on MTBDDs
for solving such systems employ iterative methods [16], since those do not re-
quire modifying the matrix during the computation, which is important for the
compactness of the MTBDD representation. In order to seamlessly use the fac-
tored representation of the matrix, we use the power method, which only requires
matrix-vector multiplication operations with the transition probability matrix.

As in the qualitative case, for until and bounded until formulas, instead of
restricting each of the factors to the set S?, which can introduce dependency on
additional variables, we apply the restriction to the candidate solution vector at
each step. We let c(0)(s) = 1 for s ∈ S=1 and c(0)(s) = 0 for s ∈ S=0∪S?, and then
iteratively compute c(i+1) = Ac(i) + b, where at each step we modify c(i) accord-
ing to S1 and S0. The power method receives as an input parameter a real value
ε, and the iteration terminates when ||c(i+1)− c(i)||∞ < ε. As the power method
is guaranteed to converge [3], we can compute an approximation to the solution
vector up to a theoretically arbitrary precision. Using the power method based
on partitioned transition probability matrix we compute Sat(PJ(Φ1 U Φ2)). The
method applies the matrix-vector multiplication procedure we described, using
the ordering π to determine the order of applications of existential abstraction.
Next properties are handled directly using the matrix-vector multiplication pro-
cedure for factored MTBDDs, and bounded until formulas are handled analo-
gously to unbounded until formulas as described in Section 2.

5 Experimental Evaluation

We evaluate our approach on a set of several benchmarks. We have implemented
a prototype PCTL model checker based on factored symbolic representations.
Our tool is implemented in C++ using version 2.5.0 of the CUDD library [18]. In
order to compare the performance of our technique to classical symbolic PCTL



Table 1. Model (MTBDD) size and peak BDD size for the verification of the respective
qualitative property for several instances of each of the considered models.

Model MTBDD size Peak BDD size
Partitioned Global PRISM Partitioned Global

Linear N=10 7 (for i = 1); 10 (for i > 1) 1111 1111 11 29
Linear N=20 7 (for i = 1); 10 (for i > 1) 7816 7816 21 59
Linear N=30 7 (for i = 1); 10 (for i > 1) 25121 25121 31 89
Herman N=15 10 (for i = 1); 8 (for i > 1) 810 810 626 3090
Herman N=17 10 (for i = 1); 8 (for i > 1) 1053 1053 927 4704
Herman N=19 10 (for i = 1); 8 (for i > 1) 1328 1328 1377 6672
Herman N=21 10 (for i = 1); 8 (for i > 1) 1635 1635 1730 8810
Tree L=4 9 3547 3688 44 193
Tree L=5 9 178855 185884 92 3549
Tree L=6 9 TO MO 188
Sensor K=4 44 75206 83885 511 21191
Sensor K=5 44 TO MO 1436
Sensor K=6 44 TO MO 4300

model checking we also implemented all procedures using monolithic symbolic
representation.1 We also compare to the state-of-the-art symbolic probabilistic
model checker PRISM [13], version 4.3.

For the comparison with PRISM, we use options -m -cuddmaxmem 2g, that
is, the symbolic engine with memory limit for CUDD increased to 2GB. Each
experiment was run on a 3 GHz Intel Xeon processor with a timeout of 10 hours.

We consider several probabilistic systems that can be naturally modelled
as DBNs, and which exhibit different structure of their underlying dependency
graphs. In our first example this graph has a simple linear structure, and thus,
there exists a natural variable ordering, in which variables that directly depend
on each other are close. The canonical Herman’s protocol benchmark [11], which
we consider next, also falls into this category. As an instance with a more com-
plex dependency structure we then consider a network model where nodes are
organized in a full binary tree. Such dependency structure arises commonly in
fault tree analysis [17]. We also consider an instance with a grid structure, as an
abstraction of device networks such as sensor and communication grids [9].

Now we describe the benchmarks and give a summary of our experimental
results. Then, in subsection 5.1 we interpret and discuss these results.

Network with a linear topology. As our first benchmark we consider a network
of N computers organized in a simple linear topology: for each i ∈ {1, . . . , N−1}
there is an unidirectional connection from machine i to machine i + 1. Each
machine is associated with a Boolean variable upi, which indicates whether at
the current step the machine is up or down. A machine which is up can fail with
probability p in the next step. A machine i > 1 which is down, can be rebooted
with probability q, only if machine i − 1 is up in the current step. This defines
conditional probability distributions Pr(up′i | upi, upi−1) for i = 2, . . . , N .

We used values p = q = 0.4 and considered the following verification tasks:

(1) The property P=1(♦ ”all machines are down”) holds in every state.

(2) Compute the probability of ♦≤10 ”machine N is down”, for the initial
state in which all machines are up.

1 The code is available at http://www.mpi-sws.org/~rayna/atva16-experiments/
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Fig. 1. Results for verification task (2) for the linear topology benchmark.

(3) Compute the probability of ♦≤10 ”exactly one machine is up”, for the
initial state in which all machines are up.

The sizes of the MTBDDs for the partitioned and the global transition re-
lations for N ∈ {10, 20, 30} are shown in Table 1. There we also show the peak
BDD size reached during the verification of the qualitative property (1). The
table also contains these results for selected instances of the other benchmarks.

Figure 1 shows a comparison of the peak MTBDD size reached during ver-
ification task (2) executed for N = 10, . . . , 23. For this specific quantitative
property the peak size when using the factored representation remains constant,
and when using the monolithic transition relation grows. This is not the case
for verification task (3), as it can be seen from Figure 2, which shows that for
the respective property the peak MTBDD sizes are essentially equal for the two
approaches. For N = 23 in verification task (3) our approach runs out of mem-
ory, and the classical algorithm based on the global transition relation exceeds
the time limit of 10 hours at N = 19. Regarding the execution time, while for
verification task (2) all instances complete in under 0.1 seconds, for (3) we see
in Figure 2 that our approach has better performance.

Since for verification task (2) the peak size of the MTBDD does not increase
withN , our approach can verify this property even in cases when the MTBDD for
the global transition system cannot be constructed. This is the case for example
for N = 100, 200, 300, where our approach completes successfully, but PRISM
exceeds even a 20 GB memory limit while building the model.

Herman’s self-stabilization protocol. Herman’s protocol [11] is a distributed
self-stabilization algorithm. This is a randomized protocol forN processes (where
N is odd) organized in a ring communication topology to reach a stable state,
in which exactly one process has a token. Each process is associated with a
random Boolean variable xi, and process i has a token if xi = x((i−1) mod N).

If process i has a token it sets xi to 0 or 1, each with probability 1
2 . Otherwise,

it sets xi to x((i−1) mod N). This defines conditional probability distributions
Pr(x′i | xi, x((i−1) mod N)) for i = 1, . . . , N . We consider the following properties:

(1) Every state satisfies the property Φ1 = P=1(♦stable).



(2) Every state satisfies the property Φ2 = P≥ 1
2
(♦≤hN

2

stable), where hN2

with h = 4
27 is the upper bound on the expected stabilization time [4].

The MTBDD sizes for the partitioned and the global transition relations are
shown again in Table 1 for N ∈ {15, 17, 19, 21}, as well as the peak BDD size
for the qualitative property. Regarding the peak MTBDD sizes, the situation is
similar to property (3) in the linear topology case: we do not observe a significant
difference between the partitioned and the global versions. For N = 15 we have
25179 nodes in both cases, increasing to 400370 (respectively 401543) for N = 19.
For N = 21 the partitioned approach runs out of memory, while the global one
exceeds the timeout (PRISM successfully verified the property, in more than 11
hours). Here, our approach does not exhibit significantly better running time.

Network with a tree topology. Next we consider a network of machines orga-
nized in a full binary tree with L levels, consisting of 2L − 1 machines. Again,
each machine i can be up or down and is associated with a Boolean random vari-
able upi. A machine at a leaf node can at each step be down with probability
p and up with probability 1 − p. A machine i at a non-leaf node is only in use
if both of its children, machines 2i + 1 and 2i + 2 are down, and can only then
fail, again with probability p. In our experiments we let p = 0.6 and analyze the
probability of the system going down (i.e., the machine at the root going down):

(1) The property P=1(♦ ”the root is down”) holds in every state.

(2) Compute the probability of ♦≤1000 ”the root is down”, for the initial
state in which all machines are up.

We show the results for the quantitative case for trees with L = 4, . . . , 10
levels in Figure 3. Here we observe a significant difference in terms of the peak
intermediate MTBDD size. For L = 5 the factored representation results in more
than 60 times smaller peak MTBDD, and for L = 6 the global approach reaches
the time limit, while PRISM runs out of memory (given 20 GB of memory
PRISM also runs past the 10 hour mark). Our approach does not reach the
timeout even for the tree with 10 levels, as shown in the right plot in Figure 3.
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Fig. 2. Results for verification task (3) for the linear topology benchmark.
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Fig. 3. Results for verification task (2) for the tree topology benchmark.

Sensor grid. Our final benchmark is a sensor network model described in [9].
We consider a simplified setting where we do not model power consumption and
lost nodes. The sensor network models a forest fire alarm system which consists
of K × K sensors organized in a grid. The purpose of the system is to detect
fires and carry the alerts to the boundary of the forest (grid), while each sensor
communicates directly only with its four neighbours. At each time point each
sensor is in one of four possible states: sleep, sense, listen and broadcast. From
the sleep state a sensor goes with probability 1

2 to sense and with probability
1
2 to listen. If a sensor in state sense detects fire it goes to state broadcast and
stays there forever. Otherwise it goes to state listen where it checks if one of
its neighbours is broadcasting. If this is the case, it starts broadcasting in state
broadcast forever, and otherwise it goes back to state sleep. In the initial state
there is a fire at a fixed single cell (Fx, Fy). We analyze the probability of reaching
a state in which there is fire still only at (Fx, Fy) (i.e., we assume that the fire does
not spread), and the alarm is successfully propagated to the grid’s boundary:

(1) Verify the property that if there is a fire only at a fixed cell (Fx, Fy), then
with probability 1 the alarm reaches the boundary.

(2) Compute the probability that if there is a fire only at a fixed cell (Fx, Fy),
then the alarm reaches the boundary within b time steps.

We consider grids of size K ∈ {4, 5, 6} and fix (Fx, Fy) = (2, 2). For K = 4
we set b = 20, for K = 5 and K = 6 we set b = 5. For K = 4, the peak MTBDD
size for our approach is 3783, while for the verification using the global transition
relation this is 69893 (the size of the global MTBDD is actually larger and is
75206) and the size of the PRISM model MTBDD is 83885. For K = 5 we have
peak size of 6718952, while the construction of the global MTBDD times out,
and PRISM runs out of memory during the model construction.

5.1 Discussion

The objective of this work is to evaluate factored symbolic representations for
quantitative verification. We observe that the use of the partitioned symbolic
representation leads to negligible or no improvement in the majority of cases.



As it can be expected, the size of the model representation is considerably
smaller in the partitioned version, and for qualitative properties the advantages
of partitioned representation and early quantification do carry over from non-
probabilistic verification. Unfortunately, the same cannot be said about quanti-
tative verification. The reason is that early variable elimination can decrease the
number of variables, but not the number of different terminals in an MTBDD.
For example, for Herman’s protocol with 15 processes we observe multiplication
operations where the maximum number of terminals reached during the sequence
of early variable elimination steps is 12362, while the result of the multiplica-
tion has 612 terminals. For the same operation, with the same end result, the
intermediate result when using the global transition matrix has 2880 terminals.

For very simple quantitative properties and systems, such as property (2) in
the linear topology benchmark, which only refers to the last machine in the linear
network, we do observe notable effects on the peak MTBDD size. However, in
these cases already the classical symbolic verification methods are quite efficient,
and the performance improvement is not dramatic.

For quantitative properties that refer to all the variables in the DBN or where
intermediate verification steps require more global reasoning, the partitioned
approach does not perform better than the standard one. Indeed, for property
(3) in the linear topology benchmark and the quantitative stabilization property
for Herman’s protocol the peak MTBDD size using the factored representation
is comparable to the size of the MTBDD for the global transition relation.

These observations extend also to the benchmarks with more complex de-
pendence graphs. While factorization is beneficial for the simple property that
refers only to the root node of the tree, the analysis of the sensor network bench-
mark is prohibitively hard even for the partitioned approach. For size of the grid
K = 5 our method succeeds, reaching a peak MTBDD size of more than 6
million nodes, while the other two run out of time and memory respectively,
during model construction. However, already for K = 6 our approach exceeds
the timeout as well, and thus also does not scale beyond small values of K.

6 Conclusion

We presented and evaluated a symbolic model checking approach based on a
partitioned symbolic representation of Markov chains induced by DBNs. Our
experimental results indicate that known techniques for exploiting model struc-
ture in symbolic verification are not efficient in the quantitative setting. While
factorization proves to be efficient for model checking qualitative PCTL proper-
ties, we conclude that achieving scalability in quantitative reasoning for DBNs
requires exploring different avenues.
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Proving the Herman-protocol conjecture. CoRR, abs/1504.01130, 2015.

5. Randal Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

6. J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently
in symbolic model checking. In Proceedings of the 28th ACM/IEEE Design Au-
tomation Conference, DAC ’91, pages 403–407. ACM, 1991.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, June 1992.

8. Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and
J. Yang. Spectral transforms for large Boolean functions with applications to
technology mapping. In DAC, pages 54–60, 1993.

9. A. Demaille, S. Peyronnet, and B. Sigoure. Modeling of sensor networks using
XRM. In Leveraging Applications of Formal Methods, Verification and Validation,
2006. ISoLA 2006. Second International Symposium on, pages 271–276, Nov 2006.

10. M. Fujita, P.C. McGeer, and J.C.-Y. Yang. Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. Formal Methods in
System Design, 10(2):149–169, 1997.

11. T. Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, 1990.

12. Holger Hermanns, Joachim Meyer-Kayser, and Markus Siegle. Multi terminal bi-
nary decision diagrams to represent and analyse continuous time Markov chains. In
3rd International Workshop on the Numerical Solutions of Markov Chains, NSMC
99, pages 188–207, 1999.

13. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd
International Conference on Computer Aided Verification (CAV’11), volume 6806
of LNCS, pages 585–591. Springer, 2011.

14. Christopher J Langmead, Sumit Kumar Jha, and Edmund M Clarke. Temporal-
logics as query languages for dynamic Bayesian networks: Application to d.
melanogaster embryo development. 2006.

15. Sucheendra K. Palaniappan and P. S. Thiagarajan. Dynamic Bayesian networks:
A factored model of probabilistic dynamics. In Automated Technology for Verifi-
cation and Analysis - 10th International Symposium, ATVA 2012, Thiruvanantha-
puram, India, October 3-6, 2012. Proceedings, volume 7561 of LNCS, pages 17–25.
Springer, 2012.

16. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.
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