
Causality Analysis for Concurrent Reactive Systems
Rayna Dimitrova1, Rupak Majumdar2, and Vinayak S. Prabhu3

1 University of Leicester
rd307@leicester.ac.uk

2 MPI-SWS
rupak@mpi-sws.org

3 Colorado State University
vinayak@mpi-sws.org

Abstract

We present a comprehensive language theoretic causality analysis framework in the setting of con-
current reactive systems. Our framework allows us to uniformly express a number of causality notions
studied in the areas of artificial intelligence and formal methods, as well as define new ones that are of
potential interest in these areas. Furthermore, our formalization provides means for reasoning about
the relationships between individual notions which have mostly been considered independently in
prior work; and allows us to judge appropriateness of the different definitions for various applications
in system design. In particular, we consider causality analysis notions for debugging, error resilience,
and for liability resolution in concurrent reactive systems. Finally, we derive automata based algo-
rithms for computing various causal sets based on our language theoretic encoding, and derive the
algorithmic complexities.

1 Introduction
Causality analysis, which investigates questions of the form “Does event e1 cause event e2?” plays
an important role in many areas of science, medicine and law. In formal methods, causality analysis
has been used to determine the coverage of specifications [5] (that is, which parts of the system under
scrutiny are relevant for the satisfaction of a specification), to explain counterexamples [2] (identify
points in a counterexample trace that are relevant for the failure of a temporal specification), to fault tree
construction [18], and to automatically refine system abstractions [4]. In artificial intelligence, causality-
based explanation finding has applications in natural language processing, automated medical diagnosis,
vision processing, and planning. Resolving liabilities in a legal setting often relies on establishing the
causal relations between potential causes and the occurred damage [3].

Causality definitions based on counterfactuals, which are alternative scenarios where the suspected
cause e1 of e2 did not happen, date back to [13] and have been extensively studied in philosophy
(cf. [19]). In computer science, the most prominent and widely used definition of causality is that
of [12], in which the authors write “... while it is hard to argue that our definition (or any other defini-
tion, for that matter) is the right definition, we show that it deals with the difficulties that have plagued
other approaches in the past ...”. Halpern and Pearl’s approach is based on structural equations, which
describe causal dependencies between Boolean variables. We extend the Boolean study of causality
to the temporal setting; specifically, we formalize notions of causality in concurrent reactive systems
whose behaviors evolve over time. A concurrent reactive system is a composition of interacting com-
ponents; the system behavior is determined by the repeated interaction between the components over
time. We consider the setting where component implementations are not available for analysis and the
designer can only rely on specifications of their expected behavior. Thus, when analyzing an error trace
(an execution of the system that violates a desired system-level property), the only available information
about the system is the components’ specifications and the observed trace.

Recently causality analysis of component-based systems has drawn a lot of attention [8, 7, 21, 6,
9, 23, 10]. The goal is to identify a subset of the components, which have violated their local spec-
ifications, that are actually responsible for the violation of the system-level property. This requires

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

integrating the temporal order of events [16, 17, 1] in the analysis of logical causality. The main chal-
lenge lies in defining the set of counterfactual traces for a given observed trace tr. These are traces
used to reason about hypothetical scenarios where a subset of the system components behave in a way
that differs from the trace tr. Different approaches differ in the way they account for the dependencies
between the behaviors of different components, that is, how changing the behavior of one component
affects the behavior of others. The available information, a single observed system trace and the compo-
nents’ specifications, is often insufficient to faithfully reconstruct these alternative behaviors. Existing
approaches, hence, choose a specific set of trace reconstruction rules as a basis of their causality notion.
However, the suitability of a notion depends on the desired application. For example, while liability
resolution requires conservative notions that give high confidence in their determinations of causes of
failure, for system analysis and debugging less conservative notions are more appropriate, provided that
they are cost-effective and focus on relevant components. One of the limitations of existing work in this
area is that the various causality notions have been studied in isolation but no framework for comparing
different notions of causality has been provided so far.

We present a language theoretic causality framework for concurrent reactive systems incorporating
diverse counterfactual trace sets. A cause for a violation is a component set. Our analysis reasons about
two classes of scenarios to determine if component set C is a cause (for an observed system fault):
• Fault Mitigation Capability analysis asks whether the correct behavior of the component set C

is enough to mitigate the faults of all components (including those of components not in C), by
ensuring that the required system property holds.

• Fault Manifestation analysis asks whether the observed faulty behavior of the component set C is
enough to manifest a global fault (i.e., a system-property violating global behavior), even if the
components not in C were to behave correctly.

These two classifications parallel the classifications of [8, 7] of causes into necessary causes and suf-
ficient causes. However, our analysis is not limited to specific definitions of counterfactual sets. In
contrast, we provide a reasoning framework based on generic counterfactual sets, and introduce several
natural instantiations.

We will use the following example throughout the paper to illustrate the key notions of our frame-
work for causality analysis.

Example 1. Consider a system with three components, C1, C2 and C3, with a common shared resource.
Access to the resource is regulated by C3, and there are in total M units of the resource available per unit
of time. In particular, consider a solar battery for which the charge rate is M energy units per time unit.
If the initial charge is E > M, then the components cannot utilize more than M units of energy for more
than E −M steps. Thus, to be safe, we require that in each step the combined consumption should be at
most M. This system-level requirement is denoted as ϕ (in a concrete execution, however, components
can consume more than the allowed M units for a small number of steps without dire consequences).

With a view towards robust satisfaction of ϕ, the local specifications of the components constrain
their behaviors further than what is absolutely necessary for the satisfaction of this property. For ex-
ample, let the specification ϕ3 of C3 require that the resource allocation respects a given safety margin,
namely, that the combined allocation by C3 to all the components should not be more than M − 1 units
in any step. Furthermore suppose that ϕ3 specifies that, if component C1 or C2 performs a violation,
that is, consumes more units of energy than it has been allocated, then C3 should attempt to compensate
for that by reducing its own consumption. More concretely, if at time t, component C3 indicates that C1
should consume at most ∆ units in the next time instant t + 1, and at t + 1 component C1 consumes ∆ +α
instead, then C3 must decrease its own consumption at time step t + 2 (from the consumption at time
t + 1) by α, if possible (or reduce it to 0 if not), in an attempt to prevent a violation of the global prop-
erty ϕ. Note that there is a delay of one time unit for components to react to their inputs. Let the only
requirement on C1 (and also on C2) be that if C3 allocates it a resource units in the current step, then it
will consume at most a units in the next step. Consider the following trace (with the global requirement

2

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

ϕ that the combined resource consumption be at most 31), where C3 allocates at most 30 units in total
to all components:

step 1 2 3 4
allocated to C1 for next time step 6 6 6 6

consumption C1 at current time step 0 6 6 6
allocated to C2 for next time step 12 12 12 12

consumption C2 at current time step 0 18 20 20
allocated to C3 for current time step 0 7 7 7
consumption C3 at current time step 0 7 7 7

Observe that the combined consump-
tion is 33 from step 3 onwards, violating
the limit 31. C2 exceeds its limit by 6 units
at the first step, and by 8 units after that.
C3 is supposed to decrease its consump-
tion from 7 units in step 2, to 1 unit in
step 3 (and then to 0 units in step 4); but

it violates its local specification and does not do this.
Had C3 reduced its consumption as required, the global violation would not have occurred, even in

the presence of C2’s observed incorrect behavior. A causality analysis should report the component set
{C3} as one of the possible causes for the observed violation.

Both singleton sets {C2} and {C3} of components have the capability to mitigate the observed error,
i.e. the correct behavior of either component would have prevented the violation of the global require-
ment ϕ. Dually, both components C2 and C3, i.e. the component set {C2,C3}, have to behave incorrectly
as observed in order for the trace to manifest the observed error. �

Contributions. We present a systematic, language theoretic study of causality for component-based
concurrent reactive systems:
• We first describe a modular decomposition of counterfactual tracesets based on (i) hypotheses

on possible incorrect behaviors (differing from the single observed trace); and (ii) interactions
between different components due to the concurrent reactive nature of the components.

• Next, we show how composed counterfactual tracesets can be used to define various notions
of causality in a uniform fashion (Equations (1) through (4)). Our approach uses basic language
theoretic operations to reason about intricate consistency issues: issues which arise when repeated
component interactions have to be reasoned about (e.g., two components are faulty, we repair one,
and this leads to a different sequence of inputs to the unfixed faulty one).

• We demonstrate that the generality and modularity of our definition of causality allow us to seam-
lessly extend causality analysis to the case of heterogeneous fault models, where different com-
ponents are examined under different fault scenarios.

• Our unified approach allows us to compare the resulting different causality notions, and the re-
lationships between the causal sets, and thus to indicate the situations in which each of them is
most appropriate.

• We present an automata-based method for determining various causal sets in the setting of het-
erogeneous component-fault models, and derive its algorithmic complexity.

2 Preliminaries

Languages. Let Σ be a non-empty finite alphabet. A word or a trace w = σ1, σ2, . . . , σm over Σ is a
finite sequence of letters from Σ. We denote by w[i] the i-th symbol σi in the word w, and by w[i.. j] the
substring σi, . . . , σ j. Σ∗ is the set of all words over Σ, and ε is the empty word. A language is a set of
words. The concatenation of two words u,w is denoted u ·w; and similarly for languages. For a word w,
len(w) is the length of w. For a language L and a positive integer k, let L|k| denote the words in L which
have exactly k letters. A word u is a prefix of a word v, denoted u � v, iff there exists a word w such that
v = u ·w. For a language L, the language Prefs(L) consists of the prefixes of words in L. We write u ≺ v
when u is a strict prefix of v, that is u � v and u , v. Given two words u, v, let lcommpref(u, v) denote
the longest common prefix of u and v. A language L is said to be prefix closed if whenever a word v ∈ L,

3

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

we have that every prefix of v is also in L, i.e., Prefs(L) ⊆ L1.
Languages over Variables. For the purpose of modelling reactive systems in which components com-
municate via shared variables, we let an alphabet be a set of possible valuations of a set of variables over
a given finite set. If an alphabet Σ is defined over a set of variables X we denote this by Σ[X], omitting
[X] when X is clear from the context. Thus, a letter σ ∈ Σ[X] is a function σ : X 7→ ∪x∈XDΣ(x) where
DΣ(x) is the (finite) domain of the variable x. A word w over Σ[X] is a sequence of valuations for X,
i.e. every letter w[i] is a valuation of all variables in X. If Σ[X] and Π[Y] are alphabets with Y ⊆ X, and
w ∈ Σ∗, then w|Π is the projection of w on Π defined in the usual way.
Alphabet and Language Composition. Given Σ1[X1], . . . ,Σn[Xn] for which we have that for every
variable x such that x ∈ Xi and x ∈ X j for i , j, we have DΣi (x) = DΣ j (x) (i.e. common variables have
the same domain in each alphabet), we define the composite alphabet Σ1[X1] ‖ · · · ‖ Σn[Xn] to be the
alphabet Σ[X] such that X = ∪n

i=1X; such that the domain of a variable x is DΣ(x) = DΣi (x) for x ∈ Xi.
Given languages Li ⊆ Σ∗i over Σi for i = 1, . . . , n, we define the language composition of L1, . . . , Ln to
be the language: L1 ‖ · · · ‖ Ln = {w ∈ Σ∗ | w|Σi ∈ Li for all i}, over Σ[X].

Example 2 (Languages and composition). We consider a language L1 over an alphabet Σ1[X1], with
X1 = {x1, x2} and domainDΣ1 (x1) = DΣ1 (x2) = {0, 1}; and a language L2 over an alphabet Σ2[X2], with
X2 = {x2, x3}, also with Boolean domain. The language L1 is:

{(x1: b1
1, x2: b1

2), (x1: b2
1, x2: b2

2), .. , (x1: bm
1 , x2: bm

2) | b j
1=b j

2 for all 1≤ j≤m}

i.e. words where the values of x1 and x2 are the same. L2 consists of words with equal valued x2 and x3:

{(x2: b1
2, x3: b1

3), (x2: b2
2, x3: b2

3) , .. , (x2: bm
2 , x3: bm

3) | b j
2=b j

3 for all 1≤ j≤m}.

The language L1 ‖ L2 over Σ[{x1, x2, x3}] is defined as:{
(x1: b1

1, x2: b1
2, x3: b1

3), (x1: b2
1, x2: b2

2, x3: b2
3), . . .

(x1: bm
1 , x2: bm

2 , x3: bm
3)

∣∣∣∣∣∣ m ≥ 0 and
b j

1=b j
2=b j

3 ∈ {0,1} for all 1 ≤ j ≤ m

}
i.e. words where x1, x2, x3 have the same value at each step. �

Component Model. A component specification is a tuple C = (X, inp(X), out(X),Σ, ϕ), where
• X = inp(X)] out(X) is the set of variables of the component, consisting of the input variables

inp(X) and the output variables out(X) (the sets of input and output variables being disjoint);
• Σ is the alphabet, consisting of all possible valuations of the variables X;
• ϕ is a non-empty prefix-closed language over Σ, specifying the set of correct behaviours of C.
For a letter σ ∈ Σ and a variable x ∈ X we denote with σ(x) the value of x according to σ. The input

alphabet inp(Σ) of C consists of the possible valuations of the input variables inp(X), and, similarly, the
output alphabet out(Σ) consists of valuations of out(X).

Example 3 (Component). Component C1 from the example in the introduction can be modelled as
C1 = (X1, inp(X1), out(X1),Σ1, ϕ1), where2 X1 = {x3,1

a , x1,3
d }, and inp(X1) = {x3,1

a }, and out(X1) = {x1,3
d };

the alphabet Σ1 consists of the possible valuations of x3,1
a and x1,3

d ranging over [0,M], and ϕ1 contains
strings w ∈ Σ∗1 such that either (i) w is the empty string; or (ii) w[1](x1,3

d) = 0 and w[j+1](x1,3
d) ≤ w[j](x3,1

a)
for all 2 ≤ j + 1 ≤ len(w). Intuitively, the value of x3,1

a specifies the units of resource allocated to C1 by
C3 for the next step, the value of x1,3

d specifies the units depleted by C1 in the current step (this number is
given as input to C3) . The specification ϕ1 ensures that at each step C1’s consumption does not exceed
the bound specified by the value of x3,1

a in the previous step. �

1Prefix-closed languages need not be regular
2In naming variables in the examples, we follow the convention that a variable xk,i1 ,i2 ,...,i j (i) is common to the components

Ck ,Ci1 , . . . ,Ci j ; and (ii) is an output variable of component Ck , and an input variable to components Ci1 , . . . ,Ci j .

4

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

Component Compositions, Systems, & Global Specifications. Given a set of components C =

{C1, . . . ,Cn} where each Ci = (Xi, inp(Xi), out(Xi),Σi, ϕi), the component composition C1 ‖ . . . ‖ Cn is
defined in case the following two conditions both hold.

1. The sets of output variables are pairwise disjoint, i.e., if out(Xi) ∩ out(X j) = ∅ for i , j; and
2. the composite alphabet Σ1[X1] ‖ · · · ‖ Σn[Xn] exists.

The composition C1 ‖ · · · ‖ Cn is the component (XC, inp(XC), out(XC),ΣC, ϕC) defined as follows
• XC = ∪n

i=1Xi is the set of all variables;
• out(XC) = ∪n

i=1 out(Xi), i.e., the set out(XC) consist of all output variables of all components.
• inp(XC) =

(
∪n

i=1 inp(Xi)
)
\ out(XC) i.e., the set of input variables contains those input variables

which are are not output variables of any component in C.
• ΣC is the composite alphabet Σ1[X1] ‖ · · · ‖ Σn[Xn].
• ϕC is the composite language ϕ1 ‖ · · · ‖ ϕn.

A collection of composable components is called a system. Given a system S = {C1, . . . ,Cn}, a
(global) system specification ϕ is a language over the composite alphabet Σ1 ‖ · · · ‖ Σn. In this
work, we require that the system specification ϕ be prefix closed, and in addition, that ϕ contains
ϕ1 ‖ · · · ‖ ϕn. Thus, the global requirement is more relaxed than the promised behaviors of the indi-
vidual components. In other words, the system {C1, . . . ,Cn} promises to implement or refine the global
requirement ϕ. Abusing notation, we let S also denote the component composition C1 ‖ · · · ‖ Cn.

C3

C1 C2
x1,3

d

x3,1
a x3,2

a

x2,3
d

x3
d

Figure 1: Resource sharing system de-
scribed in Example 4.

Note. The composition of components as defined above im-
plies that components execute synchronously in lock-step3.
All definitions and results presented in this paper can be eas-
ily extended to the asynchronous setting, which we do not
do here for the sake of simplicity of the presentation.
System Traces. A global trace of S is a word tr ∈ Σ∗. The
trace tr is correct if tr ∈ ϕ; otherwise it is an error trace. A
local trace for component Ci is a word w ∈ Σ∗i .

Example 4 (Systems and Traces). We define component
C2 = (X2, inp(X2), out(X2),Σ2, ϕ2) analogously to C1 in our running example. Let component C3 =

(X3, inp(X3), out(X3),Σ3, ϕ3), where inp(X3) = {x1,3
d , x2,3

d }, and out(X3) = {x3,1
a , x3,2

a , x3
d}. The alphabet Σ3

consists of the possible valuations of the variables in X3 = inp(X3)∪out(X3), the range of each variable
being [0,M]. The variables x1,3

d , x2,3
d denote the current-step depletions of the resource by C1 and C2

respectively, the values of which are read in by component C3. The value of x3
d is the depletion by C3.

The variables x3,1
a , x3,2

a are the allocations of the resource to C1 and C2 for the next step. The system is
depicted in Figure 1.

The local specification ϕ3 of C3 is defined as containing all words w ∈ Σ∗3 which satisfy each of the
following four requirements (letting σ j = w[j], and σ j+1 = w[j+1], and σ j+2 = w[j+2]),

1. ϕ′′′′3 specifies that for every j ≤ len(w) we have σ j(x3,1
a) + σ j(x3,2

a) + σ j+1(x3
d) ≤ M − 1; i.e., the

planned combined depletion at step j + 1 should be at most M − 1 (leaving a safety margin of 1).
2. ϕ′′′3 specifies that w[1](x3

d) = 0, i.e. C3 should not deplete the resource at all in the first step.
3. ϕ′′3 specifies how component C3 should change its behavior at step j + 2 based on C2’s behavior

at step j + 1. It requires one of the following conditions to hold.
– σ j+1(x2,3

d+1) ≤ σ j(x3,2
a), i.e., the depletion by C2 in step j + 1 is at most what it was allocated to

it by C3 in the previous step.
– If σ j+1(x2,3

d+1) > σ j(x3,2
a), i.e., if the previous case does not hold, then:

σ j+2(x3
d) ≤ max

(
0, σ j+1(x3

d) −
(
σ j+1(x2,3

d+1) − σ j(x3,2
a)

))
.

3The components in our examples are such that in every step of the system execution each component reads the values of its
input variables that were written in the previous step and updates its output variables. This delay is not imposed by the formal
model.

5

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

That is, if C2 exceeds its allocation by an amount α at step j + 1, then C3 reduces its own con-
sumption at step j + 2 from that at step j + 1 by α (if possible).

4. ϕ′3 is the condition analogous to ϕ′′3 for component C1, and specifies how component C3 should
change its behavior based on C1’s behavior.

The system specification of C1 ‖ C2 ‖ C3 is defined to be the language ϕ containing words w such
that for every j the combined depletion is at most M. Formally, ϕ equals:

{w ∈ Σ∗ | for all j, we have w[j](x3
d) + w[j](x1,3

d) + w[j](x2,3
d) ≤ M}

We present two sample traces, letting M = 31 (the global specification ϕ is that at each step, the
combined depletion for that step must not exceed 31). The first trace satisfies ϕ and is as follows.
Note that even though C2 violates its local spec ϕ2 j, ϕ 1, ϕ 2, ϕ 3, ϕ

local specs ϕ1, ϕ2, ϕ3 ϕ1,¬ϕ2, ϕ3 ϕ1,¬ϕ2, ϕ3

x3,1
a and x3,2

a 10 10 10
x1,3

d 0 4 10
x2,3

d 0 16 16
x3

d 0 10 4

in steps 2 and 3 (as it depletes by 16 units when it
was allowed only 10 as specified by x3,2

a in steps 1
and 2), the global specification is still satisfied due
to C3 reducing its own depletion amount at step 3
from 10 (in the previous step) to 4.

The second trace given to the right j, ϕ 1, ϕ 2, ϕ 3, ϕ 4,¬ϕ
local specs ϕ1, ϕ2, ϕ3 ϕ1,¬ϕ2, ϕ3 ϕ1,¬ϕ2,¬ϕ3 ϕ1,¬ϕ2,¬ϕ3

x3,1
a 10 10 10 10

x3,2
a 10 10 10 10

x1,3
d 0 6 6 8

x2,3
d 0 16 16 16
x3

d 0 8 8 8

violates ϕ. Component C3 violates its
local specification ϕ3 at step 3 because
it should have reduced its consumption
(from that in step 2) by α where α is the
amount by which the resource depletion
by C2 exceeded its allocated 10 units (in
this case α = 6 units).

3 A Framework for Causality
In this section, we fix a system {C1, . . . ,Cn}, where Ci = (Σi, inp(Σi), out(Σi), ϕi); a specification ϕ; and
an observed trace tr < ϕ4. We also fix a non-empty collection of components C ⊆ {C1, . . . ,Cn} for
causality analysis. Let C be the components not in C. Assume, w.l.o.g., C = {C1,C2, . . . ,CnC } (thus,
C = {C1+nC , . . . ,Cn}). Let ΣC denote the composition of the alphabets of the components of C.

3.1 Counterfactual Traces & Faulty Behaviors
Counterfactual Traces. Informally, the set of counterfactual traces for a given observed trace tr, con-
sists of traces obtained from tr by correcting the behavior of some faulty components. These traces are
used to reason about hypothetical scenarios where a subset of the components behave (correctly) in a
way that differs from the incorrect behavior in the observed trace tr. Depending on the hypothetical
scenario, the set of counterfactual traces is obtained as (a subset of) the composition of trace sets of
individual component behaviors appropriately altered with respect to the trace tr.

In reactive systems, the behaviors of individual components are intertwined; This results in consis-
tency dependencies between the component behaviors that must be taken into account. As the effect of
the change in behaviors of other components that affect a particular component Ci is not easily deter-
mined, there does not exist a unique definition of counterfactual tracesets for Ci that is applicable for all
purposes. We present different constructions of counterfactual tracesets, and indicate the situations in
which each is useful. In each of these constructions, the set of counterfactual traces for a component Ci

4Global system traces (obtained by composing the local traces of individual components) are denoted in bold font.

6

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

whose observed behavior in tr is incorrect will include some of the correct behaviors of Ci (according
to ϕi), as well as some incorrect behaviors. The latter are determined according one of the fault models
F1 and F2 (presented below).

Counterfactual Sets of Incorrect Behaviors: In this paper we consider several possible scenarios
regarding the counterfactual behaviors of the incorrectly behaving components, described in the follow-
ing list. It is important to note that these are just a few representative scenarios among all that can be
captured within our framework. For all components Ci,

F1. the only incorrect local traces for component Ci that may be included in counterfactual sets are
tr|Σi and its prefixes. Essentially, this fault model assumes that if the inputs to Ci change, then the
faulty behavior disappears, and is replaced by correct behaviors (according to ϕi) over the new
input. Thus we assume that the faulty behavior of Ci was only for the particular input in tr|Σi .

F2. the only incorrect local traces for component Ci that may be included in counterfactual sets are
ones that agree with both: (i) wmxp, where wmxp is the maximal correct prefix (with respect to
ϕi) of tr|Σi ; and (ii) tr|out(Σi). Thus, any counterfactual trace must be as the original one of Ci till
the first error there, and after that it must follow the same sequence of out(Σi) output symbols as
tr|out(Σi). This model implies that after the first error in Ci, if the input were to change, Ci would
either (a) behave correctly on the new input, or (b) ignore the new input altogether and output the
same sequence of output symbols as in the original trace tr|out(Σi).

While each fault model is imperfect, there is not much else that can be done given that the input for
the analysis consists only of the properties ϕ1, . . . , ϕn and a single execution trace tr. Thus, there is no
mechanism to predict what the output of a component will be when its input changes, without paying
the cost of running additional simulations. If such additional data is available (as in [23]), it can be
easily incorporated in our models. In our work, we focus on the fault models F1 and F2. �

vi

vRepairtr(Ci)

tr|Σi

maxcp(tr)|Σi

v

v

Figure 2: Traceset Repairtr(Ci).

Now we present several ways of constructing counter-
factual tracesets, which use the notion of the maximal cor-
rect prefix of the observed trace. The maximal correct prefix
of the trace tr, denoted maxcp(tr) is defined to be the max-
imal prefix trmxp � tr that satisfies all local specifications,
i.e. (a) trmxp projected onto Σi is a subset of ϕi for all i; and
(b) for every prefix trp of tr such that trmxp is a strict prefix
of trp, there is a j such that trp|Σ j < ϕ j.

Local Counterfactual Tracesets. We define the following counterfactual tracesets for component Ci.
? Repairtr(Ci) defined as:

{
w ∈ ϕi | maxcp(tr)|Σi � w

}
.

That is, we keep the prefix maxcp(tr)|Σi for component Ci, and then take all possible correct Ci behav-
ior extensions following maxcp(tr)|Σi ; i.e, we repair the errors following maxcp(tr)|Σi , as well as the
effects in Ci of errors in other components after maxcp(tr). Observe that Repairtr(Ci) is a subset of
ϕi. Intuitively, this set captures the set of possible outcomes of Ci after maxcp(tr)|Σi , if no error had
occurred in any component. We illustrate this traceset in Figure 2.

The first trace in the Figure is the local trace for component Ci, obtained as the projection of the
global trace on Σi. The point vi denotes the place of the first violation of the local property ϕi by Ci. The
point v denotes the place of the first violation of some local property ϕk by Ck where k may be different
from i. Thus, the portion of tr|Σi until v is equal to maxcp(tr)|Σi . The set Repairtr(Ci) is obtained by
taking the cone of all correct executions of Ci from the prefix maxcp(tr)|Σi .

Observe, as depicted in the Figure, that there might be a strict prefix trp ≺ tr such that maxcp(tr)|Σi ≺

trp|Σi , and trp|Σi ∈ ϕi, i.e., component Ci might continue to behave correctly in tr|Σi after maxcp(tr)|Σi ;
however the behavior after maxcp(tr)|Σi is considered to be tainted. This is because after maxcp(tr)|Σi

there is some component which behaves incorrectly, and that incorrect behavior might affect other com-
ponents. Thus, we consider the cone of all possible behaviors after maxcp(tr)|Σi . Before maxcp(tr)|Σi ,
no component is in error, and all are behaving according to their specifications; thus, we need not con-

7

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

sider alternate traces before maxcp(tr)|Σi .
? FeasibleF1

tr (Ci) is defined as: Prefs
(
tr|Σi

)
∪ Repairtr(Ci).

This traceset is obtained by adding all the prefixes of the observed (possibly incorrect) trace tr|Σi to
the set Repairtr(Ci). Thus, this traceset consists of all local traces for Ci, that are considered feasible
according to either the observed trace; or to the promised behavior of component Ci after the prefix
maxcp(tr). This set models the faulty behavior of C under fault model F1.

In Feasible(Ci), we take the prefix set of the incorrect behavior, instead of only the whole incorrect
trace, because we want the causality analysis to be robust: the analysis should consider every intermedi-
ate trace prefix which is in error. We also include correct behaviors in Feasible(Ci), because (i) although
we want Feasible(Ci) to model incorrect behaviors, we do not want other components to count on Ci
behaving incorrectly; and (ii) correcting the behavior of some components might lead to inconsistencies
with the original local incorrect traces.
? FeasibleF2

tr (Ci).
This set is used to model the faulty behavior of Ci under fault model F2. We first obtain the incor-
rect traces for Ci under F2. Let wmxp be the maximal correct prefix (with respect to ϕi) of tr|Σi . Let
LF2

wmxp
(Ci) ⊆ Σ∗i be the language such that u ∈ LF2

wmxp
(Ci) iff u = wmxp · v for some v ∈ Σ∗i such that

len(u) = len(tr|Σi) and u|out(Σi) = tr|out(Σi). Thus, to obtain LF2
wmxp

(Ci), we cement the maximal correct
local prefix wmxp, and for the positions after that we keep the same output as in tr|Σi and we allow for
all possible inputs. The set FeasibleF2

tr (Ci) is defined to be:

FeasibleF2
tr (Ci) = Prefs

(
LF2

wmxp
(Ci)

)
∪ Repairtr(Ci).

Observe that since LF2
wmxp

(Ci) contains tr|Σi , we have FeasibleF1
tr (Ci) to be a subset of FeasibleF2

tr (Ci).5

Example 5 (Counterfactual Sets). Consider the error trace tr from Example 4 and component C3.
– Repairtr(C3) consists of all traces in ϕ3 that agree with tr|Σ3 up to and including position 2 (recall

that 3 was the first position at which ϕ3 was violated).
– FeasibleF1

tr (C3) extends Repairtr(C3) with all prefixes of tr|Σ3 .
– FeasibleF2

tr (C3) extends FeasibleF1
tr (C3) by including all traces in w ∈ Σ∗3 such that: (i) len(w) = 4;

and (ii) tr|Σ3 [1..2] is a substring of w; and (iii) w agrees with tr|Σ3 on the variables out(X3). �

Many of the traces in these local tracesets are infeasible due to interaction with other components.
These infeasibilities will be taken care of in the construction of global counterfactual tracesets explained
later in this subsection.

In addition to the two counterfactual tracesets above, we have the most expansive tracesets:
(a) ϕi, which is a superset of Repairtr(Ci),
(b) Prefs

(
tr|Σi

)
∪ ϕi, a superset of FeasibleF1

tr (Ci),
(c) Prefs

(
LF2(Ci)

)
∪ ϕi, a superset of FeasibleF2

tr (Ci).
Notation. For a set D = {D1, . . . ,Dm} of components we denote Repairtr(D) = Repairtr(D1) ‖ · · · ‖

Repairtr(Dm), and similarly for the functions FeasibleF1
tr and FeasibleF2

tr .
Global Counterfactual Tracesets. The global counterfactual tracesets of a system with respect to the
component collection C are obtained by composing appropriately chosen local counterfactual tracesets,
for components both in C and in C. That is, for each component Ci, we pick a counterfactual traceset
Ti, e.g., Ti = Repairtr(Ci), or Ti = FeasibleF1

tr (Ci), or Ti = FeasibleF2
tr (Ci). The global counterfactual

traceset is then T1 ‖ . . .‖Tn. Local traces from Ti which become infeasible due to component interactions
get automatically eliminated by the language composition definition. In the next section we show what
are the appropriate local counterfactual tracesets that need to be chosen; and how global counterfactual
sets can be used for various kinds of causality inference.

5Note that in case the observed behavior tr|Σi satisfies the local specification ϕi, we have FeasibleF2
tr (Ci) and FeasibleF1

tr (Ci)
both to be equal to Repairtr(Ci).

8

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

3.2 Causality Analysis with Counterfactuals
Causality analysis uses counterfactual sets for reasoning about the following two scenarios:

1. Fault Mitigation Capability: Would the correct behavior of the component set C be enough
to mitigate the faults of all components (including those of components that are not in C), by
ensuring that the global property ϕ holds?

2. Fault Manifestation: Is the observed faulty behavior of the component set C enough to manifest
a global fault (i.e., does it lead to global behaviors that violate ϕ), even if the components in C
were to behave correctly?

If the answer to the first question above is affirmative, we classify the component set C as fault mitigation-
capable. If the answer to the second question is affirmative, we classify C as fault manifesting6. (In
[8, 7], a fault mitigation-capable set is known as a necessary cause; and a set which manifests faults is
known as a sufficient cause.) Here, we use the more reasoning-mechanism explicit names, and try avoid
referring to these sets as causes, to keep the trace analysis separate from the philosophical aspects of
causality.7 In Subsection 3.3 we analyze fault mitigation-capable component sets. Fault manifestation
analysis is presented in Subsection 3.4.
Remark. Before we formally define the sets, note that correcting an individual component does not
always make things better with respect to the global requirement ϕ, i.e., two wrongs can make a right.

3.3 Causality Analysis: Fault Mitigation
Fault Mitigation-Capable Sets. Intuitively, a component set C is fault mitigation-capable if it can, were
it to behave correctly, mask the faults of C in the observed trace tr with respect to ϕ by ensuring that
every trace in the counterfactual traceset belongs to ϕ. Here we present the definitions of two possible
such sets that arise from two natural choices of counterfactual tracesets.
? MitigCbl-1. Component set C is fault mitigation-capable if

Repairtr(C) ‖ FeasibleF1
tr (C) ⊆ ϕ (1)

Thus, we correct the behavior of the components in C; and take the incorrect together with the cor-
rect behaviors of components in C, and ask if all the resultant traces are in ϕ. An obvious question is
why the correct behaviors of C need to be taken – since Repairtr(C) contains only correct behaviors
of C, composing these correct behaviors with correct behaviors from C would automatically result in
the satisfaction of ϕ. The reason for this is the following subtlety. Let C = {C1} and C = {C2,C3}.
Suppose all components are faulty in the observed trace. If we correct C1, then the situation can
arise where Repairtr(C1) ‖ Prefs

(
tr|Σ2

)
‖ Prefs

(
tr|Σ3

)
is the empty set due to inconsistencies between

Repairtr(C1) and Prefs
(
tr|Σ3

)
(and thus Repairtr(C1) ‖ Prefs

(
tr|Σ2

)
‖ Prefs

(
tr|Σ3

)
⊆ ϕ vacuously),

but Repairtr(C1) ‖ Prefs
(
tr|Σ2

)
‖ FeasibleF1

tr (C3) is not empty; and moreover is not a subset of ϕ.
That is, including correct behaviors of some components in C can help us in finding out that correcting
the behaviors of the components in C does not suffice to ensure satisfaction of the global property.

Is Repairtr(C) ‖ FeasibleF1
tr (C) ⊆ ϕ ?

Yes

C fault mitigation capable C not fault mitigation capable
(Approximate) (Conservative)

No

Figure 3: Fault mitigation capability analysis under F1.

Approximation introduced by the analysis. As
mentioned previously, the counterfactual anal-
ysis procedure can only rely on a single ob-
served trace tr and the expected behavior

6C can contain both faulty, and non-faulty components. It follows from our definitions in the following sections that if C does
not contain any faulty components, then C is neither fault mitigation-capable, nor fault manifesting.

7Readers who are more comfortable with causality terminology can regard “fault mitigation-capable set” as an alias for
“necessary cause”; and “fault manifesting set” as an alias for “sufficient cause”.

9

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

component specifications. It assumes that all
global traces resulting from composing local projections of tr and correct local traces are possible exe-
cutions of the system. Under this assumption, a conservative result is one that relies on the existence of
an execution (with certain properties) in this set (the set being FeasibleF1

tr ()).
In particular, the answer “No” in Figure 3, that is, when Equation 1 is not satisfied is conservative.

A negative answer is given when one of the following two cases arises:
– After correcting the components in C the violation of ϕ will remain under the original observed faulty

behaviors of the components in C. That is, we have Repairtr(C) ‖ Prefs
(
tr|Σ

C

)
* ϕ.

– After correcting the components in C the violation of ϕwill remain in the case when some components
in C are corrected. That is, when we have that Repairtr(C) ‖ Prefs

(
tr|Σ

C

)
⊆ ϕ but it holds that

Repairtr(C) ‖ FeasibleF1
tr (C) * ϕ.

In both cases there exists a global counterfactual trace in the set of possible executions discussed above
that violates ϕ, and thus Equation 1 is conservative when it gives a “No” answer.

Since Equation 1 is based on the fault model F1 (see Subsection 3.1), it is based on the assumption
that in case the repair of C changes the input to the faulty components in C, these components will
react correctly (that is, satisfying their local specifications) to the new input. As this assumption is
not always guaranteed (as mentioned before, there is no mechanism to predict what happens when we
change inputs to faulty components), the “Yes” answer in Figure 3 is approximate. That is, in the case
when the actual components do not satisfy the fault model F1 a positive answer need not imply that
correcting the components in C will result only in executions that satisfy ϕ (this may or may not be the
case, since changing the input to C may lead to new faulty behaviors).
Our next definition of fault mitigation-capable sets is based on the fault model F2 from Subsection 3.1
and includes into consideration additional counterfactual behaviors thus allowing for a finer analysis in
the cases when Equation 1 is satisfied.
? MitigCbl-2. Component set C is fault mitigation-capable if

Repairtr(C) ‖ FeasibleF2
tr (C) ⊆ ϕ (2)

This corresponds to the fault model F2 from Subsection 3.1.

Is Repairtr(C) ‖ FeasibleF2
tr (C) ⊆ ϕ ?

Yes
C is F2 fault C is not F2 fault

(Approximate) (Approximate)

No

Is Repairtr(C) ‖ FeasibleF1
tr (C) ⊆ ϕ ?

mitigation capable mitigation capable
C is not F2 fault
mitigation capable

No

(Conservative)

Yes

Figure 4: Fault mitigation capability analysis under F2.

We again correct the behavior of the com-
ponents in C. For C components which violate
their local specifications in tr, we take the ob-
served incorrect sequence of outputs (after the
local maximal correct prefixes), plus the cor-
rect behaviors. Thus, in this analysis, we as-
sume that for a faulty component in C, after
the local maximal correct prefix, this compo-
nent can output the same output sequence as
before, even if its input changes (or it can be-
have correctly on the changed input). For the

components that behave correctly in the observed trace tr we consider only sets of correct behaviors. A
discussion of the approximations mentioned in the figure can be found in the appendix.

Example 6 (Fault Mitigation Capability). Let us consider again the system and the error trace from
Example 4. Using the analysis above, we conclude that under each of the fault models F1 and F2:
• {C1} is not fault mitigation capable. This is obvious, since the component C1 behaves correctly in

the observed trace tr.
• {C2} is fault mitigation capable. In the observed trace tr, C2 violates its safety requirement

at positions greater or equal to 2, and the violation at position 4 results in a violation of the

10

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

global specification ϕ. Composing the set Repairtr(C2) with FeasibleF1
tr (C1) = Repairtr(C1) and

FeasibleF1
tr (C3) yields traces in ϕ, since by correcting C2 we also eliminate the observed violation

of ϕ3 by C3 (recall that in tr the first violation of ϕ2 occurs at position 2 and the first violation of
ϕ3 at 3).
In this example, even under the fault model F2, where FeasibleF2

tr (C3) also includes local traces
where the output of C3 remains as in tr, the violation of ϕ3 and ϕ gets ruled out.

• {C3} is fault mitigation capable. In the observed error trace tr C2’s consumption at step 2 exceeds
the allocated amount in a way that can be tolerated by C3 in step 3, where the violation of ϕ3 oc-
curs. Thus composing any trace in Repairtr(C3) with traces from FeasibleF1

tr (C1) = Repairtr(C1)
and FeasibleF1

tr (C2) results in a trace on which ϕ is satisfied (even if ϕ2 might still be violated).
As the elimination of the global violation does not depend on C2 reacting to the changed input it
receives from C3, this holds also under the fault model F2. �

In Example 6 we saw that the set {C2} is fault mitigation capable under both fault models F1 and F2
because the elimination of the global violation did not depend on C3 reacting to the changed input from
C2. In the Appendix, we give two additional examples which present situations in which this is not the
case, and demonstrate scenarios in which fault mitigation capability classification depends on the fault
mode used.
Notes. (A.) For C to be fault mitigation-capable, we require that all traces in the counterfactual sets of
Equations 1 and 2 be in ϕ. Thus, we have a universal quantifier over the traces in the counterfactual set.
A bigger counterfactual set makes it harder to classify C as fault mitigation-capable. As a corollary, if
C is fault mitigation-capable under Equation 2, it is also so under Equation 1 (recall that FeasibleF1

tr (Ci)
is a subset of FeasibleF2

tr (Ci)). If C is not fault mitigation-capable under Eq. 1, it is also not so under
Equation 2.
(B.) The conditions in Equations 1 and 2 allow for the possibility that some components in C might
behave correctly, even if their observed behavior in tr was incorrect. This makes it harder to classify
C as being fault mitigation-capable (we recall that since two wrongs can make a right, correcting a
component does not always help). �

Application. In fortification, we want to know if fixing some of the components under our control
would suffice to “absorb” the observed errors of the other components so that the global requirement is
satisfied; and this notion is what fault mitigation-sets capture.

3.4 Causality Analysis: Fault Manifestation
In this section we analyze fault manifesting sets; which are the component sets C such that their observed
faulty behavior alone is sufficient to manifest a violation of the global specification ϕ. An immediate
question for fault manifestation is whether the faulty behavior of C is such that some resultant behavior
is faulty w.r.t. ϕ. The answer to this question is useful in debugging contexts.
Fault Manifesting Sets. Formally, a component set C is fault manifesting if its observed faulty behavior
alone is enough to manifest in a global error (with respect to ϕ) in some resultant trace, even if the
components in C were to behave correctly. One natural fault manifesting set is as follows.
? Manifest-1. Component set C is fault manifesting if

FeasibleF1
tr (C) ‖ Repairtr(C) * ϕ (3)

The resulting classification analysis is depicted in Figure 5.
In case of an answer “Yes” in Figure 5, we have that there exists a scenario in which the observed

behavior of some components in C is sufficient to lead to a violation of the global specification ϕ,
assuming that the remaining components in C (if any) and the components in C behave correctly. A
discussion of the approximation can be found in the appendix.

11

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

Is FeasibleF1
tr (C) ‖ Repairtr(C) * ϕ ?

Yes

C faults suffice to manifest C cannot be claimed

(Approximate)(Conservative)

No

a global violation to be fault manifesting

Figure 5: Fault manifestation analysis un-
der F1 (Manifest-1).

Application. In debugging, we wish to find the group
of components, whose erroneous behaviors may cause a
violation of the global specification. Of these, groups
C whose erroneous behaviors are sufficient to manifest
a global error are the most urgent ones; unless these
are fixed, errors will be manifested. These sets are the
Manifest-1 sets.

A Stronger Notion of Fault Manifestation. Now we
present a stronger definition of fault manifesting sets, in

which the possible counterfactual behaviors of components C are restricted to prefixes of the observed
behavior, and the requirement for the existence of traces violating ϕ is stronger.

Strong Fault Manifesting Sets. Intuitively, a component set C is strong-fault manifesting if its ob-
served faulty behavior alone is enough to manifest in a global error (with respect to ϕ) in some re-
sultant trace, whether the components in C were to behave correctly or incorrectly. Recall that C =

{C1+nC , . . . ,Cn}, thus C has n
C

= n − nC elements. For each component, consider a function GCi :
{0, 1} 7→ {Prefs

(
tr|ΣCi

)
, Repairtr(Ci)} defined by:

GCi (0) = Prefs
(
tr|ΣCi

)
; GCi (1) = Repairtr(Ci).

Now consider the natural extension to C, where GC : {0, 1}nC 7→ FeasibleF1
tr (C) defined by:

GC(b1, b2, . . . , bn−nC) = GC1+nC (b1) ‖ GC2+nC (b2) ‖ . . .GCn (bn−nC)

That is, the boolean vector (b1, b2, . . . , bn−nC) tells us whether to choose Prefs
(
tr|ΣCi

)
, or Repairtr(Ci)

for each component of C in the composition.
? Manifest-Strong. Set C is strongly-fault manifesting if

∀(b1, .., bn−nC) ∈ {0, 1}
n−nC

we have Prefs(tr|ΣC) ‖ GC(b1, b2, .., bn−nC) * ϕ (4)

That is, for each component Ci ∈ C, no matter whether we consider only the observed behavior
Prefs

(
tr|ΣCi

)
, or the corrected behaviors Repairtr(Ci), there will be some resultant trace tr′ in com-

position with the observed behavior Prefs(tr|ΣC) of C such that this trace tr′ will violate ϕ. This means
that the observed faulty behavior of C is sufficient to manifest in a global error in some trace, no matter
which components of C are repaired or kept as they are.
Equation 4 enables us to make a bullet-proof argument that C is for sure to blame for the ϕ violation.
The defining criterion ensures that no matter which subset of C components were to be corrected, some
resulting trace in composition with the observed C behavior would have resulted in a ϕ violation.

4 Fault Models & Language-Theoretic Algorithms

4.1 Analysis of Heterogeneous Fault Models
An important distinguishing feature of our language theoretic framework for counterfactual analysis is
its modularity. This modularity yields a powerful reasoning technique that cleanly generalizes existing
causality notions, e.g., of [8, 7] to more expressive cases. Previous work required the same fault model
for all components. Our approach allows us to drop this requirement by just changing the individual

12

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

counterfactual sets: since the set of counterfactual traces is constructed locally for each component, we
do not have to assume that they follow the same fault model.

Formally, the generalization is done as follows. A fault-model profile for a system S = {C1, . . . ,Cn}

is a tuple f̂ = (fi)n
i=1 of functions where each fi : Σ∗ → 2Σ∗i maps system traces to a set of local traces for

Ci such that for every trace tr, we have tr|Σi ∈ fi(tr), and fi(tr) is prefix closed. Intuitively, fi describes
the fault model for component Ci, and given an observed (error) trace tr ∈ Σ∗, the set fi(tr) is the set of
possible local counterfactual traces for Ci (which includes tr|Σi since it was observed). In this generalized
setting, the sets FeasibleF1

tr and FeasibleF2
tr define two specific functions: f ′i (tr) = FeasibleF1

tr (Ci) and
f ′′i (tr) = FeasibleF2

tr (Ci). Let

CFac f̂
tr

(
C
)

= fk(tr) ‖ fk+1(tr) ‖ · · · ‖ fn(tr),

where C = {Ck,Ck+1, . . . ,Cn} (the set CFac f̂
tr (C) is defined similarly) . Using the counterfactual set

CFac f̂
tr, we give a general definition of mitigation capability based causality, generalizing Equations 1

and 2, as follows: the component set C is fault mitigation-capable under the fault-model profile f̂ if

Repairtr(C) ‖ CFac f̂
tr

(
C
)
⊆ ϕ (5)

Similarly, the general definition of fault manifestation based causality as follows: component set C is
fault manifesting under f̂ if

CFac f̂
tr (C) ‖ Repairtr(C) * ϕ (6)

Employing heterogeneous fault models leads to improved precision of the causality analysis, easily
incorporating designer knowledge about the behaviour of components and available simulation data.

Bridging the Gap to Structural-Model based Causality. The seminal work of Halpern and Perl [12]
investigated a notion of causality in non-reactive settings which was based on structural equations be-
tween variables which specified which variables affect which others. The fault model profile f̂ , and its
utilization in causality definitions 5 and 6 bridges the gap between structural-model based causality and
causality notions in a reactive setting as follows. A component Ci has an associated variable dependency
given by structural equations which specify which variables affect which others (possibly in the future),
e.g. a change in input variable x at a time-step will lead to a change in output variable y at some point
in the future; but another output variable z will remain unaffected by the change in x — this means that
y depends on x, and z does not depend on x. This variable dependency can be utilized in the fault model
profile fi for Ci: the set fi(tr) will only contain strings which satisfy the structural variable dependencies
mentioned above. Of course, a change in variable x may lead to a change in y in the future, and if y is an
input to some other component C j, this may lead to a change in some other variable u, and this change
may flow back to Ci in effect changing z. Thus, we have two manners in which changes in variable values
propagate: (i) locally inside a component (perhaps through states), and (ii) in an inter-component fash-
ion in the reactive setting. A fault-model profile based on structural equations captures the first kind of
variable change effects. Language composition automatically accounts for the second kind of variable
change flow for counterfactual reasoning in a modular fashion. Thus, our causality framework using
fault-model profiles lays down the theoretical foundations for connecting the work in structural-model
based non-reactive causality, to causality in a reactive setting.

4.2 Algorithm Complexity using Language-Theoretic Analysis

We now analyze the time complexity of determining causality based on the language theoretic frame-
work of Section 3. We discuss the language theoretic operations employed, and give bounds for the case

13

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

where the components are given as finite state automata. For more expressive models, the time bounds
correspond to time bounds of analogous language operations.

For an alphabet Σ and a word w, let
• ConeΣ(w) = {w} · Σ∗, i.e, the word w followed by all possible strings in Σ∗; and
• for Σ(X) = Σ′(X′) ‖ Ξ(X′′), for some alphabets Σ′(X′) and Ξ(X′′), and for wp a prefix of w, let

AlterRestΞ(w,wp,Σ) = {wp · u | u ∈ Σ|w|−|wp | and (wp · u)|Ξ = w|Ξ}.

The set AlterRestΞ(w,wp,Σ) contains words of length |w| obtained from w by keeping the first |wp|

letters unchanged, and then changing all letters not in Ξ to all possible values (this corresponds to
changing valuations of variables in X′\X′′ after wp).

The counterfactual sets from Section 3.1 can be defined using these languages and basic operations
on languages as given below. Here, wmxp is the maximal correct prefix (with respect to ϕi) of tr|Σi .

Repairtr(Ci) = ϕi ∩ ConeΣi (maxcp(tr)|Σi),

FeasibleF1
tr (Ci) = Prefs

(
tri|Σi

)
∪ Repairtr(Ci),

FeasibleF2
tr (Ci) =

Prefs
(
AlterRestout(Σi)

(
tr|Σi , wmxp,Σi

))
∪ Repairtr(Ci),

Specific algorithms for the case of finite automata to obtain the basic sets on the right are as follows.
Recall that a non-deterministic finite automaton (NFA) over an alphabet Σ is a tupleA = (Q, q0,Σ, ρ,Q f),

where Q is a finite set of states, q0 ∈ Q is an initial state, Σ is the input alphabet, ρ ⊆ Q × Σ × Q is
a transition relation, and Q f ⊆ Q is a set of accepting states. A deterministic automaton (DFA) is one
where for any q ∈ Q and σ ∈ Σ, there is at most one q′ such that (q, σ, q′) ∈ ρ. We denote L(A) as the
language of words in Σ∗ accepted by A. Define |A| = |Q| + |ρ| (thus |A| ≤ |Q| × |Σ|). Let the local and
global specifications ϕ1, .., ϕn and ϕ be given as DFAs or NFAsA1, ..,An andA respectively. Note that
since the specifications are prefix closed, we can assume that all reachable states are final states [14].

The various entities in the previous equations are obtained as follows.
• The string wmxp can be obtained from tr and ϕi in time O(|tr| · |Qi|

2) by running the automaton
Ai on tr|Σi (if Ai is a DFA, this can be done in O(|tr|) time). Similarly, string maxcp(tr) can be
obtained in O(|tr| ·

∑n
i=1 |Qi|

2) time (O(n · |tr|) in the DFA case).
• A DFA Di with |tri|Σi | states (and size |tri|Σi | + |Σi|) can be constructed such that L(Di) =

ConeΣi (tri|Σi).
• We can construct a DFA D′i with |tri|Σi | states and size such that L(D′i) = Prefs(tri|Σi) using the

standard prefix construction.
• We can construct a DFA for AlterRestout(Σi)

(
tr|Σi , wmxp,Σi

)
with |tri|Σi | states (and size |tri|Σi | · |Σi|).

It can be modified to accept Prefs
(
AlterRestout(Σi)

(
tr|Σi , wmxp,Σi

))
by making all states final.

Union and intersection are standard operations on NFAs/DFAs. Thus, the sets Repairtr(Ci), and FeasibleF1
tr (Ci)

and FeasibleF2
tr (Ci) can all be obtained in polynomial time and represented as NFAs of size polynomial

in the sizes ofA1, . . . ,An.
Consider a fault-model profile f̂ = (fi)n

i=1 such that fi(tr) = FeasibleF1
tr (Ci) or fi(tr) = FeasibleF2

tr (Ci).
Recall Equations 5 and 6. The equations involve taking the parallel composition of the fi(tr) sets. As we
just showed, each fi(tr) set can be represented as the language of a NFA (or DFA) of polynomial size.
The parallel composition of the fi(tr) sets can be obtained by taking the parallel composition of the cor-
responding automata using the product construction (in polynomial time). Finally, the equations involve
making language inclusion checks, which involve checking L(B1) ‖ · · · ‖ L(Bn) ⊆ L(A), where Bi are
(polynomial sized) automata derived as above for either the Repairtr or FeasibleF1

tr or FeasibleF2
tr sets.

This check can be performed by checking L(B1) ‖ · · · ‖ L(Bn) ⊆ L(Ã) where Ã is the deterministic
automaton forA. Putting everything together, we get the following.

14

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

Theorem 1. Let f̂ = (fi)n
i=1 be a fault-model profile such that fi(tr) = FeasibleF1

tr (Ci) or fi(tr) =

FeasibleF2
tr (Ci). Let the local and global specifications ϕ1, . . . , ϕn and ϕ (such that ϕ1 ‖ . . . ‖ ϕn ⊆ ϕ) be

given as NFAs (or DFAs) A1, . . . ,An and A respectively. Given an observed trace tr < ϕ, for the fault
profile f̂ , a component set C can be determined to be: fault mitigation capable (Equation 5), or fault
manifesting (Equation 6) in time (i) polynomial in the sizes of A1, . . . ,An, and tr; and (ii) exponential
in |A| in caseA is an NFA, or polynomial in |A| in caseA is a DFA. �

Determining whether C is strongly-fault manifesting according to Equation (4) is harder as there is
an additional for all quantifier, and thus is exponential time even in the caseA is a DFA.

A careful analysis shows that for fault-model profiles with fi(tr) = FeasibleF1
tr (Ci) or fi(tr) =

FeasibleF2
tr (Ci), the fault mitigation capability (Equation 5) check can be performed only with word-

sets that are of length at most |tr|. As a result, the fault mitigation capability problem is in co-NP. A
similar argument shows fault manifestation determination to be in NP. This also allows us to check
language inclusion, without determinizingA, in time polynomial in |A| and exponential in |tr|.

For general regular language fault-model profiles when ϕ1, . . . , ϕn, ϕ are given as NFAs language
inclusion for two nondeterministic automata can be encoded in each of the causality analysis ques-
tions. Thus, the causality analysis problem is PSPACE-complete (membership in PSPACE follows from
PSPACE membership of NFA language inclusion).

5 Discussion

We discuss some of the related work in the Appendix. Our work overcomes the shortcomings of existing
work in the reactive setting as follows. As evidenced by works [8, 7, 22, 6, 9], the main challenge in
causality analysis for concurrent systems is in the construction of counterfactual sets. Definitions that do
not account for the effect of repairing some components on the behavior of others [8] result in vacuous
causes. This implies the need for definitions that take component interactions into account. However,
the ones existing in the literature are overly complicated, which hinders understanding and ensuring
their correctness. For example, in [7] the cone of influence of a set of components is defined by means
of the fixpoint of a function g, where g itself is defined by a formula spanning several lines containing six
quantified variables, with five of them being trace temporal-position variables (cf. Definition 4 in [7]).
Similarly, in [6, 9] the definition of unaffected prefixes is described as a fixpoint computation involving
a sequence of four connected definitions. In addition, the minimal unaffected prefixes in [6] are not
always composable. More precisely, the expression for tr∗i in Definition 9 of [6] allows for having
different extensions w for different components j, thus resulting in local unaffected prefixes that are not
consistently extendable taken together, resulting in an empty set of global counterfactual traces. This
problem stems from the mixed-up treatment of local and global traces.

Our work demonstrates that we can leverage the theory of language composition to obtain modular
and transparent definitions for counterfactual sets. This decomposition allows us to focus on local
alternative scenarios when comparing different causality notions; our framework based on language
composition takes care of global-level reactive reasoning in a uniform way across the different causal
sets. This machinery allows us to (1) define and easily reason about new causal sets (eg strongly-fault
manifesting sets in Equation (4) that had not been considered before) based on the application need,
(2) seamlessly incorporate heterogeneous fault models in causal sets (existing work assumes a common
fault model across all components), (3) compare different causality notions; and (4) automatically obtain
algorithms for computing different causal sets based on standard language theoretic operations.

15

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

References
[1] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan Leue. Symbolic causality

checking using bounded model checking. In SPIN, volume 9232 of Lecture Notes in Computer Science, pages
203–221. Springer, 2015.

[2] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R.J. Trefler. Explaining counterexamples using causality. In
CAV 09, LNCS 5643, pages 94–108. Springer, 2009.

[3] F.D. Busnelli. Causation. In Principles of European Tort Law, pages 43–63. Springer, 2005.
[4] H. Chockler, O. Grumberg, and A. Yadgar. Efficient automatic STE refinement using responsibility. In TACAS

08, LNCS 4963, pages 233–248. Springer, 2008.
[5] H. Chockler, J.Y. Halpern, and O. Kupferman. What causes a system to satisfy a specification? ACM Trans.

Comput. Logic, 9(3):20:1–20:26, 2008.
[6] G. Gössler and L. Aştefănoaei. Blaming in component-based real-time systems. In EMSOFT 14, pages

7:1–7:10. ACM, 2014.
[7] G. Gößler and D.L. Métayer. A general trace-based framework of logical causality. In FACS 13, LNCS 8348,

pages 157–173. Springer, 2013.
[8] G. Gößler, D.L. Métayer, and J.-B. Raclet. Causality analysis in contract violation. In RV 10, LNCS 6418,

pages 270–284. Springer, 2010.
[9] Gregor Gößler and Daniel Le Métayer. A general framework for blaming in component-based systems. Sci.

Comput. Program., 113:223–235, 2015.
[10] Gregor Gößler and Jean-Bernard Stefani. Fault ascription in concurrent systems. In Pierre Ganty and Michele

Loreti, editors, Trustworthy Global Computing - 10th International Symposium, TGC 2015, Madrid, Spain,
August 31 - September 1, 2015 Revised Selected Papers, volume 9533 of Lecture Notes in Computer Science,
pages 79–94. Springer, 2015.

[11] S. Halle. Causality in message-based contract violations: A temporal logic ”whodunit”. pages 171–180, 2011.
[12] J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach. part I: Causes. The British

journal for the philosophy of science, 56(4):843–887, 2005.
[13] D. Hume. An Enquiry concerning Human Understanding. 1748.
[14] J-Y. Kao, N. Rampersad, and J. Shallit. On NFAs where all states are final, initial, or both. Theor. Comput.

Sci., 410(47-49):5010–5021, 2009.
[15] Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From probabilistic counterexamples via causality

to fault trees. In SAFECOMP, volume 6894 of LNCS, 2011.
[16] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,

1978.
[17] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system models. In VMCAI, volume

7737 of Lecture Notes in Computer Science, pages 248–267. Springer, 2013.
[18] Florian Leitner-Fischer and Stefan Leue. Probabilistic fault tree synthesis using causality computation. IJC-

CBS, 4(2):119–143, 2013.
[19] D. Lewis. Void and object. In Causation and Counterfactuals, pages 277–290. MIT Press, 2004.
[20] Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti Gupta. Whodunit? causal analysis for counterexamples.

In ATVA 2006, volume 4218 of LNCS, pages 82–95, 2006.
[21] S. Wang, A. Ayoub, R. Ivanov, O. Sokolsky, and I. Lee. Contract-based blame assignment by trace analysis.

In HiCoNS 13, pages 117–126. ACM, 2013.
[22] S. Wang, A. Ayoub, B. Kim, G. Gößler, O. Sokolsky, and I. Lee. A causality analysis framework for

component-based real-time systems. In RV 13, LNCS 8174, pages 285–303. Springer, 2013.
[23] Shaohui Wang, Yoann Geoffroy, Gregor Gößler, Oleg Sokolsky, and Insup Lee. A hybrid approach to causality

analysis. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Verification - 6th International Conference,
RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, volume 9333 of Lecture Notes in Computer
Science, pages 250–265. Springer, 2015.

16

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

Appendix

A Examples: Fault Mitigation Analysis
Example 7 (Fault Mitigation Capability under F2). Consider the system of Example 4. Suppose we
restrict the correct behaviors of C3 further by adding the following condition ϕ†3 to ϕ3: for every 1 ≤
j < len(w), we have w[j](x3,1

a) + w[j](x3,2
a) + w[j+1](x3

d) ≥ 29. That is, component C3 tries to optimize
the resource allocation so that the combined availability (usage by C3) is at least 29 in each step. All

j, ϕ 1, ϕ 2, ϕ 3,¬ϕ 4,¬ϕ
local specs ϕ1, ϕ2, ϕ3 ϕ1,¬ϕ2, ϕ3 ¬ϕ1,¬ϕ2,¬ϕ3 ¬ϕ1,¬ϕ2,¬ϕ3

x3,1
a 11 12 12 12

x3,2
a 11 12 12 12

x1,3
d 0 8 16 16

x2,3
d 0 16 16 16
x3

d 0 7 5 5

components are faulty in the trace on
the left. In the trace, both C1, and C2
exceed their allocations by 4 units each
at each step (after step 3). Component
C3 is faulty from step 3 on, as it should
have decreased its consumption by 5 (=
16−11) units from the depletion at step

2, but instead it only decreases by 2 units (from 7 to 5), and does not decrease at all in step 4.
Analysis under fault model F1 (Equation 1) classifies {C3} as fault mitigation-capable, i.e. able to

absorb the faults of both C1 and C2. Intuitively, this seems false: if both C1 and C2 are consuming
16 units as observed, there is nothing C3 can do. The reason why we get this false answer is due to
the shortcoming of fault model F1. Consider any fix of C3. Let this fixed word be σ′1, σ

′
2, σ

′
3, σ

′
4. A

fix requires that component C3 reduce its resource depletion to 2 at step 3, as C2 had exceeded its
allocation by 5 units in the previous step (16 − 11) Because of the new optimized resource allocation
requirement introduced at the beginning of the example, this reduction of σ′3(x3

d) to 2 implies that 28 ≥
σ′2(x3,1

a) + σ′2(x3,2
a) ≥ 27, thus, the values of at least one of x3,1

a , x3,2
a must change from the observed

12 units in the trace at step 2 to something higher. However, F1 assumes that whenever inputs change
to a faulty component, the outputs must change to correct ones, thus F1 implies that the combined
consumption of C1,C2 will reduce to 28 or lower (from the observed 32). Thus, F1 forces us to assume
that if C3 gives a higher allocation to C1,C2, it will result in a lower consumption by C1,C2 as their
inputs have changed.

An analysis under F2 on the other hand assumes that C1,C2 will keep consuming 16 units from step
3 onwards, and thus will not classify {C3} as fault mitigation-capable. �

Example 8 (Fault Mitigation Capability under F1). Consider the system of Example 4 (with the addi-
tional requirement ϕ†3 added to ϕ3). In addition, let component C2 have another output variable x2,3

r
denoting the requested amount for the next to next time step; and let this variable be read by C3. Let us
add to ϕ2 the requirement ϕ†2 that the value requested x2,3

r at step j is at least as much as the depleted
amount x2,3

d by C2 in step j + 2. Finally, let us add another requirement ϕ‡3 to ϕ3 saying that the value of
the allocation to C2, i.e. x3,2

a is equal to its requested resource x2,3
r in the previous time step. Thus, C3

trusts the estimate of C2.Consider the observed trace σ1, σ2, σ3, σ4 on the left in which C2,C3 are faulty, C1 is not. ϕ3 is
j, ϕ 1, ϕ 2, ϕ 3,¬ϕ 4,¬ϕ

local specs ϕ1, ϕ2, ϕ3 ϕ1,¬ϕ2,¬ϕ3 ϕ1,¬ϕ2,¬ϕ3 ϕ1,¬ϕ2,¬ϕ3

x3,1
a 13 25 7 7

x3,2
a 13 5 23 23

x1,3
d 0 10 9 7

x2,3
d 0 16 23 23

x2,3
r 5 6 8 6
x3

d 0 2 0 0

violated at step two because σ1(x3,1
a) +

σ1(x3,2
a) + σ2(x3

d) < 29 violating the
added optimization criteria ϕ†3. This is
a benign violation. The global spec-
ification stays violated at step 4 even
though the combined utilization is less
than 31 as the bound was violated in

the previous step (we require ϕ to be
prefix-closed).

17

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

Intuitively, looking at the example, the problem with C3 is that it blindly trusted C2’s estimates and
did not increase allocation to C2 by the end of step 2 (and concomitantly decrease allocation to C1).
While the added variable x2,3

r is available to C3, it is of no use as C2 is giving incorrect estimates of its
future resource usage. Observe that if C1 is working perfectly (and depleting the resource way less than
C2). It appears that if C2 had given correct values in its estimates x2,3

r , then C3 could have allocated
correctly (telling C1 to decrease its usage), and avoided a global violation, thus we expect {C2} to be
fault mitigation-capable.

We claim {C2} is fault mitigation-capable under F1, but not under F2. The reason is that under
F2, even if the inputs to C3 change (in particular the estimates x2,3

r by component C2), the behavior of
C3 will be assumed to be the same as observed, with the same old output values of x3,1

a , x3,2
a . However,

under F1, with the changed inputs, the behavior of C3 is assumed to be different, and correct; and will
correctly set the changed x3,1

a , x3,2
a values (in the process telling C1 to reduce its usage). Thus in this

example, F1 is the fault model which gives the intuitively correct answer to fault mitigation capability,
compared to Example 7 where F2 gave the intuitively correct answer. This example, and Example 7
show that which fault model to choose depends on the application dynamics �

B Example: Fault Manifestation Analysis

Example 9 (Fault Manifestation). We consider the system and the error trace from Example 4 and
determine that {C2,C3} is fault manifesting. The set Prefs(tr|Σ2‖Σ3) contains the projection of tr on the
alphabet Σ2 ‖ Σ3. Since C1 behaves correctly in tr, the observed error trace is actually an element of
the set of counterfactual traces which implies that the set {C2,C3} is fault manifesting. �

C Casual Sets: Approximations Resulting from Fault Model Assumptions

C.1 MitigCbl-1

Quantifying the confidence in the approximation. In the case of a “Yes” answer to the decision question
in Figure 3, we can quantify our confidence the given answer as follows.
– If the set Repairtr(C) ‖ {tr|Σ

C
} is non-empty, then it means that the behavior of C can be corrected in

such a way that the original faulty behavior of C is compatible with the new behavior of C. According
to Equation 1 we have that every trace in this set satisfies the global specification ϕ. Thus, in this
case, the answer “Yes” is actually exact, meaning that repairing C suffices to absorb the remaining
faults of C that were observed.

– If, on the other hand,
- Repairtr(C) ‖ {tr|Σ

C
} is empty and

- Repairtr(C) ‖ Prefs
(
tr|Σ

C

)
is not empty,

then we use the maximal prefix wmxp ∈ Prefs
(
tr|Σ

C

)
such that Repairtr(C) ‖ {wmxp} is non-empty

to determine our confidence in the result. The prefix wmxp is the longest prefix of tr|Σ
C

which is
consistent with the corrected behaviors Repairtr(C) of C. The confidence in the “Yes” answer is
bigger the longer wmxp is (after occurrences of errors in C); if e.g. tr|Σ

C
is only a one-step extension

of wmxp, then Equation 1 tells us that correcting the components C will be enough to absorb the faults
of C of tr|Σ

C
, except possibly at the last step for which we do not know.

18

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

C.2 MitigCbl-2

Approximation introduced by the analysis. Although here we consider a larger set of counterfactual
traces than in the previous definition, a positive answer to the question whether Equation 2 is satisfied is
again approximate. The reason is that the components in C are not guaranteed to satisfy the fault model
F2, and, again, unconsidered behaviors (on which ϕ might not hold) might arise in the actual system
after repairing C.

Unlike in the previous definition, now an approximation occurs even in the case of a negative an-
swer, as depicted in Figure 4. The reason is that we might classify C as not being fault mitigation-capable
under Equation 2 based on a trace which is not a possible trace of the actual system, while it can happen
that in the actual system repairing C leads to a completely new output behavior of C that results in traces
on which ϕ holds. Thus, the “No” answer to the check of Equation 2 is approximate.

Quantifying the confidence in the approximation. The confidence of a “Yes” answer in this case is
determined in a way similar to before. The more interesting case is that of a “No” answer.

Recall that FeasibleF1
tr (C) ⊆ FeasibleF2

tr (C), and thus if C is not fault mitigation capable under
Equation 1, then it is not mitigation capable under Equation 2 either. Therefore, as shown in Figure 4,
it only makes sense to consider Equation 2 when the answer to the check of Equation 1 is “Yes”. This
allows us to use the confidence in the “Yes” answer for Equation 1 determined as before to determine
the confidence in the “No” answer for Equation 2.
– If the “Yes” answer for Equation 1 was exact, then we should have low confidence in the “No” answer

for Equation 2.
– Otherwise, the higher the confidence in the “Yes” answer for Equation 1 is, the lower our confidence

in the “No” answer for Equation 2 should be.

C.3 Manifest-1

Approximation introduced by the analysis. The “Yes” decision in Figure 5 is conservative, since the
witness trace that violates ϕ is composed of observed and correct behaviors of the components. A “No”
answer, however, is bound to be approximate, in the actual system correcting the components in C may
result in new executions that are not considered as part if our set of counterfactuals.
Quantifying confidence in the approximation. In case of a “No” decision in Figure 5, we quantify our
confidence in the “No” answer analogously to the analysis of the “Yes” decision for MitigCbl-1.
– If the set {tr|ΣC } ‖ Repairtr(C) is non-empty, then it means that some correct behavior of C is compat-

ible with the observed behavior of C, and all the traces in the composition satisfy ϕ. Thus, if C were
to behave correctly, the violation of ϕ would disappear, irrespective of the observed faulty behavior
of C. This indicates that the confidence in the “No” decision in this case is high.

– If, on the other hand,
- {tr|ΣC } ‖ Repairtr(C) is empty and
- Prefs

(
tr|ΣC

)
‖ Repairtr(C) is not empty,

then we consider the maximal prefix wmxp ∈ Prefs
(
tr|ΣC

)
such that {wmxp} ‖ Repairtr(C) is non-

empty, exactly like in the “Yes” decision for MitigCbl-1, and quantify our confidence according the
length of wmxp (after occurrences of errors in C).

D Relationships Between Causal Sets

In this subsection we establish relations between some of the causal sets defined in Subsections 3.3
and 3.4. First, we compare the different sets with respect to the strength of the corresponding causality

19

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

notions. Recall again that in the literature on causality, fault mitigation-capable sets are called necessary
causes, and that fault manifesting sets are called sufficient causes.

Proposition 1 (Fault Mitigation-Capable Sets). If set C is fault mitigation-capable under Equation (2),
then it is also fault mitigation-capable under Equation (1).

The following proposition formalizes the relationship between fault mitigation-capable sets and fault
manifesting sets.

Proposition 2 (Interrelationships). 1. If C is a fault mitigation-capable set according to Equation (1),
then C is not a fault manifesting set according to Equation (3).

2. If C is a fault manifesting set according to Equation (3), then C is not fault mitigation-capable
under Equation (1).

Note that the set of all components {C1, . . . ,Cn} is trivially both a fault mitigation-capable set, and
also a fault manifesting set. However, in applications we are interested in such sets that are minimal with
respect to the subset relation, and identifying such sets is a non-trivial task. The definitions we studied
here enjoy the monotonicity properties stated in the proposition below.

Proposition 3 (Monotonicity). 1. If a set C satisfies Equation (1), then any superset D ⊇ C also
satisfies Equation (1).

2. If C satisfies Equation (3) any superset D ⊇ C also satisfies it.

E Computational Complexity of Causality Problems

Let A,B be NFAs over an alphabet Ξ, such that L(A) and L(B) are prefix closed. Note that for NFAs
where all states are final, language inclusion has the same complexity as for general NFA, i.e., it is
PSPACE-complete [14]. We will now show how to reduce the question L(B) ⊆ L(A) to the fault
mitigation and fault manifestation questions, thus proving their PSPACE-hardness.

We define two components C1 and C2 as follows. Assume w.l.o.g. that we have letters a1, b1, a2, b2 <
Ξ. Let x1 and x2 be two variables with domains O1 = {a1, b1} and O2 = {a2, b2} respectively, and xΞ be
a variable with domain Ξ.

We define the component C1 = (X1, inp(X1), out(X1),Σ1, ϕ1), where X1 = {xΞ, x1, x2}, inp(X1) = {x2},
out(X1) = {x1, xΞ} and

ϕ1 =
(
L(A) ‖ ({a1} · O∗1) ‖ ({a2} · O∗2)

)
∪(

L(B) ‖ ({a1} · O∗1) ‖ ({b2} · O∗2)) ∪ {ε}.

Intuitively, if the first value of x2 is a2, then C1 has to output strings from L(A), and if this value is b2,
C1 has to output strings from L(B).

For the other component, let C2 = (X2, inp(X2), out(X2),Σ2, ϕ2), where X2 = {x2}, inp(X2) = ∅,
out(X2) = {x2} and ϕ2 = {a2} · O∗2 ∪ {ε}.

Finally, we define the global specification as

ϕ = L(A) ‖ ({a1} · O∗1) ‖ O∗2 ∪ {ε}.

Thus, we clearly have that ϕ1 ‖ ϕ2 ⊆ ϕ, regardless of L(B).
Fix the fault profile f̂ : f1(tr) = Ξ∗ ‖ O∗1 ‖ O∗2 and f2(tr) = O∗2.
Consider the trace tr of length 1, where for the first letter we have x1 = b1, x2 = b2 and xΞ = ξ for

some letter ξ ∈ Ξ. Clearly tr < ϕ1, ϕ2, ϕ; Repairtr(C1) = ϕ1, and CFac f̂
tr (C2) = {b2} ·O∗2 ∪ ϕ2. Thus, the

20

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

set C1 = {C1} is fault mitigation-capable w.r.t. f̂ iff

ϕ1 ‖ ({b2} · O∗2) ⊆ L(A) ‖ ({a1} · O∗1) ‖ O∗2
iff

L(B) ‖ ({a1} · O∗1) ‖ ({b2} · O∗2) ⊆ L(A) ‖ ({a1} · O∗1) ‖ O∗2
iff

L(B) ⊆ L(A).

Similarly, the set {C2} is not fault manifestation-capable iff ϕ1 ‖ ({b2} ·O∗2) ⊆ L(A) ‖ ({a1} ·O∗1) ‖ O∗2 iff
L(B) ⊆ L(A).

Given the automata A and B, in time polynomial in their size we can construct NFAs for ϕ1 and ϕ
by extending their alphabet by O1 ‖ O2. The NFAs for ϕ2, f1(·) and f2(·) are of constant size. Thus, we
can reduce L(B) ⊆ L(A) to checking fault mitigation/ fault manifestation for a suitable fault model.

F Additional Related Work
In this section we discuss some of the most prominent definitions of causes from the literature and
highlight connections to our definitions of causal sets from Equations 1 through 6.
Causality for Structural Equations. The paper [12] gives a definition of “actual cause” in a setting of
structural equations over Boolean variables, where the structural equations describe the causal depen-
dencies between these variables. Actual causality is based on counterfactual as well as on contingency
dependency: only contingencies that “do not interfere with active causal processes” are considered. The
major difference from our (and related work) on concurrent reactive systems is that [12] assumes that
a full model of the system is known. In contrast, our work deals with (concurrent) systems for which
we are only given a set of correct behaviors, and one single incorrect behavior. In addition, most of the
work of [12] deals with acyclic variable dependencies, while concurrent reactive systems are usually
cyclic.

Recently, the structural equation model approach by Halpern and Pearl was extended to reason about
models of event-based concurrent systems [17, 1] in which temporal logic formulas are used to describe
the causal process of a violation. Similarly to the original approach, these methods do not face the
challenge of constructing counterfactual executions for black-box systems, as they work with a given
system model. In fact, they integrate causality checking in the model-checking process.
Necessary Causes. The work of [7], building upon their earlier work [8], presents a causality definition
that takes into account the effect of changing the behavior of one component on others in a reactive
setting. In [6] the reasoning based on necessary causes (fault mitigation-capable sets, in our terms)
is extended to the real-time setting; here the definition of counterfactual traces requires that for each
component the difference between the local counterfactual traces and the observed local trace is minimal.
This difference is minimized locally for each individual component, which, a careful analysis shows,
can construct local traces that are not composable. The analysis in [22] can also yield inconsistent
counterfactual traces, leading to erroneous results. The fault ascription analysis in [10] is parameterized
by a counterfactual operator, but only a single concrete definition based on the idea of closeness of
counterfactuals to the observed behaviours is provided. In contrast, we propose and discuss several fault
models.
Sufficient causes. The notion of sufficient causes has not been explored much in the literature. Def-
initions based on universal quantification have been studied in [8] and in [7]. Our definition of fault
manifesting sets presented in Subsection 3.4, on the other hand, is an existential one and requires that
some resultant behavior is faulty.
Contributory causes. [21] studies a conservative version of the so called contributory causes (where
one is interested in the ratio between the number of traces that satisfy ϕ after replacing all components in

21

Causality Analysis for Concurrent Reactive Systems R. Dimitrova, R. Majumdar and V.S. Prabhu

C with correct ones and the total number of such alternative traces). The analysis is focused on a special
case where a set of components is determined to be a cause (called culprit) iff this ratio is 1, which is
essentially the same as the classical definition of necessary cause. The key difference between [21] and
previous work is in the way the set of counterfactual traces is defined: it assumes that faulty components
in C will produce the same output letter sequence as in the observed trace tr even if their inputs change,
while components that have not violated their local properties on tr will react correctly to changed
input. The set of counterfactual traces obtained using our fault model F2 is larger, an therefore it is
more difficult to characterize a set as a cause based on F2 than based on [21].
Root causes. The notion of root causes for contract violations in message-based systems has been
studied in [11]. The problem studied there is different from ours, as it does not capture mitigation. The
root cause is determined by the shortest non-compliant prefix of the error trace, regardless of whether
this violation could have been mitigated by another component. As a consequence, there is exactly one
root cause, while there can be multiple mitigation-capable sets, which will not be discovered by the
algorithm in [11].
Counterexample analysis. In [20] the authors perform causality analysis of counterexample traces,
relying on a single error trace and the program source, without considering counterfactual traces. The
key difference to our work is that they do not reason about concurrent reactive systems, but work on
the level of variables in a single program, over which they compute weakest preconditions. Other
works [15, 18] derive fault trees from probabilistic counterexamples employing counterfactuals in the
flavour of the notion by Pearl and Halpern. Since they also work in the single-component setting, they
do not face the challenges we address.

22

	Introduction
	Preliminaries
	A Framework for Causality
	Counterfactual Traces & Faulty Behaviors
	Causality Analysis with Counterfactuals
	Causality Analysis: Fault Mitigation
	Causality Analysis: Fault Manifestation

	Fault Models & Language-Theoretic Algorithms
	Analysis of Heterogeneous Fault Models
	Algorithm Complexity using Language-Theoretic Analysis

	Discussion
	Examples: Fault Mitigation Analysis
	Example: Fault Manifestation Analysis
	Casual Sets: Approximations Resulting from Fault Model Assumptions
	MitigCbl-1
	MitigCbl-2
	Manifest-1

	Relationships Between Causal Sets
	Computational Complexity of Causality Problems
	Additional Related Work

