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Abstract— We consider the problem of optimal reactive
synthesis — compute a strategy that satisfies a mission
specification in a dynamic environment, and optimizes a
performance metric. We incorporate task-critical informa-
tion, that is only available at runtime, into the strategy
synthesis in order to improve performance. Existing ap-
proaches to utilising such time-varying information require
online re-synthesis, which is not computationally feasible
in real-time applications. In this paper, we pre-synthesize
a set of strategies corresponding to candidate instantia-
tions (pre-specified representative information scenarios).
We then propose a novel switching mechanism to dy-
namically switch between the strategies at runtime while
guaranteeing all safety and liveness goals are met. We
also characterize bounds on the performance suboptimality.
We demonstrate our approach on two examples — robotic
motion planning where the likelihood of the position of
the robot’s goal is updated in real-time, and an air traffic
management problem for urban air mobility.

I. Introduction

As autonomous systems become more widely used
in society, we require provable guarantees of perfor-
mance and safety in complex missions [1], [2]. In many
applications, it is not enough for an autonomous agent
to satisfy its mission objective, but it is often required
that it also optimizes some performance metric. Due
to limits on communication, sensing, or computational
power, the autonomous agent may have access to
information that may be available only at the time
of execution. Traditional approaches either ignore this
information or can only make use of it at the cost of
heavy computation or high memory requirements [3],
[4]. We propose a correct-by-construction switching
strategy that utilizes such information at runtime for
improved performance while guaranteeing the satis-
faction of high-level mission specifications, and also
alleviates the shortcomings of the existing methods to
enable real-time deployment.

For example, consider a motion-planning problem
for a service robot as shown in Figure 1. A high-level
mission for the robot is to meet the human infinitely of-
ten, while ensuring that it always has sufficient battery
power (rechargeable by returning to a charging station).
Given the probability of the human’s location based on
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Fig. 1: Path planning environment for a turtlebot (in
blue) to infinitely often service a human (in red). The
robot can recharge at a charging station (in green).

past observations (runtime information), the proposed
approach finds the human in a shorter period of time
(compared to strategies that ignore this probability
information), while satisfying the safety specification.

For another, more complex example, consider the
coordination of landing a collection of autonomous air
vehicles in urban air mobility (UAM) operations [5], [6].
We seek to optimize performance (reduce maximum
delay in aircraft landing) while ensuring safe takeoff
and landing operations [7]. The on-demand nature of
UAM means knowledge of air traffic demands is not
available at design time. This necessitates a method that
can use traffic information gained at runtime to adjust
behavior for improved performance and safety. Previ-
ous approaches implement runtime safety enforcement
[8]–[11], but cannot handle more general specifications.

The two scenarios described previously illustrate a
reactive planning problem. The autonomous system has
to react to an uncontrolled environment, and guarantee
correctness with respect to a given mission specification
for all possible behaviours of the environment for all
time points in the future. The standard approach to
solve such a planning problem is to use reactive synthesis
[12], [13]. In particular, there is a large body of work
focused on synthesis for a fragment of linear temporal
logic (LTL) called GR(1) [14]–[17]. The solution time is
polynomial in the state space of the game structure,
and exponential in the number of atomic proposi-
tions. Therefore, this approach typically relies on offline
planning, that prevents easy incorporation of runtime
information. In problems with a continuous state space,
a discrete abstraction is used that preserves correctness.
Such controllers however, can be significantly subopti-



mal with respect to the performance objective [4].
We consider the runtime information as a (possibly

continuous) parameter associated with the environ-
ment. The work in [4] allows for near-optimal be-
haviour on continuous executions, however the authors
focus on a specialized cost metric. Additionally, their
method relies on online re-synthesis, which is not
feasible for real-time deployment. This work was later
extended in [3] to account for delay costs arising from
a potentially adversarial environment. However, it re-
lies on the discretization of the continuous parameter
space, which fails to scale with the number of atomic
propositions in the synthesis problem.

Our approach incorporates parametrized runtime in-
formation by switching between pre-computed strate-
gies. First, for a given set of candidate instantiations of
the parameter we synthesize offline optimal strategies
that satisfy all task specifications. Next, we obtain
bounds on the suboptimality incurred by the use of
these policies at all other parameter values. This com-
putation does not require discretization of the param-
eter space. At runtime, we dynamically switch strate-
gies based on the these suboptimality bounds, thereby
incorporating runtime information into the offline syn-
thesis of correct-by construction policies. To this end,
we derive a switching function that guarantees the re-
sulting execution is provably correct, and near-optimal.

The main contributions of this paper are: 1) a novel
switching protocol between pre-synthesized correct
strategies that improves performance, 2) correctness of
the switching protocol with respect to the mission spec-
ification, and 3) characterization of the suboptimality
bounds on performance. We demonstrate the proposed
approach on a motion planning problem for a service
robot, and a traffic scheduling problem for UAM.

II. Preliminaries
1) Basic notation: We consider reactive systems

with a finite set E of Boolean inputs, controlled by the
Environment, and a finite set A of Boolean outputs,
controlled by the Agent. Together, they define the sys-
tem’s input alphabet ΣE = 2E and the output alphabet
ΣA = 2A. We define Σ = ΣE × ΣA.

2) Game structures: We model the interaction be-
tween the agent and its environment as a two-player
game. Formally, the game is played on a game structure
which is a tuple G = (G, g0,Σ, δ), where:
• G is a finite set of states and g0 ∈ G the initial state;
• Σ = ΣE × ΣA is the alphabet of actions available to

the environment and the agent respectively;
• δ : G × Σ → G is a complete transition function,

that maps each state, input (environment action)
and output (agent action) to a successor state.

At every state g ∈ G (starting with g0), the en-
vironment chooses an input σE ∈ ΣE, and then the
agent chooses some output σA ∈ ΣA. These choices
define the next state g′ = δ(g, (σE, σA)), and the process

then continues from g′. This order of moves ensures
that at each step the agent’s action reacts to the cur-
rent action of the environment. The resulting (infi-
nite) sequence π = (g0, σE,0, σA,0, g1)(g1, σE,1, σA,1, g2) . . .
is called a play, where g0 is the initial state, and
for every i ≥ 0 we have that gi+1 = δ(gi, σE,i, σA,i).
For a play π and an integer m ∈ N we define
π[0,m] = (g0, σE,0, σA,0, g1) . . . (gm−1, σE,m−1, σA,m−1, gm) to
be the prefix consisting of the first m elements of π. For
m = 0, π is the empty word. The set Plays(G) is the set
of all plays in the game G, and the set Prefs(G) is the set
of all finite prefixes of the plays in the Plays(G). Plays
starting at a given arbitrary (not necessarily initial) state
g ∈ G of G are defined analogously. We denote with
Plays(G, g) the set of plays starting at a state g.

3) Winning conditions: The winning condition for the
agent in a game G is given as a set of plays ϕ ⊆
Plays(G) that specifies the set of plays that result in
the agent winning the game. We consider games in
which the agent has a Generalized Reactivity 1 (GR(1))
winning condition, which are common in a variety of
practical applications. In the following, we make use
of the linear temporal logic (LTL) operators always
and eventually . For full details on LTL syntax and
semantics, we refer the reader to [18].

A GR(1) winning condition is defined by sets of
states SE,SA ⊆ G, Ei ⊆ G for i = 1, . . . ,m and F j ⊆ G for
j = 1, . . . ,n, and consists of all plays π such that if π ∈

SE∩ Ei for all i = 1, . . . ,m, then π ∈ SA∩ F j
for all j = 1, . . . ,n. Intuitively, for a play π to be win-
ning, whenever the environment satisfies the assump-
tions SE, E1, . . . , Em, then the agent must
satisfy all the guarantees SA, F j, . . . , Fn. By
abuse of logical operators, we abbreviate GR(1) condi-
tions as

ϕ =

 SE ∧

m∧
i=1

Ei

→
 SA ∧

n∧
i=1

Fi

 .
4) Strategies: A strategy for the agent is a function

ρA : Prefs(G)×ΣE → ΣA which maps a prefix (the history
of the play so far) and an action of the environment to
an action of the agent. A strategy for the environment
is a function ρE : Prefs(G) → ΣE that maps the prefix
of the play so far to an action of the environment. We
denote the sets of all strategies for the agent and for
the environment by MA and ME respectively.

Every pair of strategies ρA ∈ MA for the agent
and ρE ∈ ME for the environment define a play,
denoted by Π(ρA, ρ∈). More precisely, Π(ρA, ρ∈) = π =
(g0, σE,0, σA,0, g1)(g1, σE,1, σA,1, g2) . . . ∈ Plays(G) where for
every i ≥ 0, σE,i = ρE(π[0, i]) and σA,i = ρA(π[0, i], σE,i).
Similarly, we define the set of plays starting at a state
g that are consistent with ρA, denoted Plays(G, ρA, g).

Given a game structure G and a winning condition ϕ
for the agent, we seek to synthesize a strategy ρA ∈ MA
for the agent such that for every strategy ρE ∈ ME for
the environment it holds that Π(ρE, ρA) ∈ ϕ, i.e., all



(a) p1 = [1, 0, 0] (b) p2 = [0, 1, 0] (c) p3 = [0, 0, 1]

Fig. 2: Continuous trajectories resulting from executing policies corresponding to the solution of (2) for three
different instantiations of runtime information vector p : p1 = [1, 0, 0], p2 = [0, 1, 0], and p3 = [0, 0, 1] .

resulting plays satisfy ϕ. In such cases we say that ρA
satisfies ϕ, denoted ρA |= ϕ.

III. Problem formulation

We represent runtime information as n-dimensional
real vectors, for a given n ∈ N. We denote the set of
all possible vector values for the runtime information
by P ⊆ Rn. We score the performance of each play
in the game using runtime information in P via a
performance metric, J : Plays(G) × P → R.

Assumption 1. For every p ∈ P and every strategy ρA ∈

MA such that ρA |= ϕ, there exists a strategy ρE ∈ ME such
that J(Π(ρA, ρE), p) ≥ J(Π(ρA, ρ′E), p) for every ρ′E ∈ ME.

Assumption 1 ensures a well-defined cost function
using the metric J. We can thus define

C(ρA, p) = maxρE∈ME J(Π(ρA, ρE), p) (1)

as the cost function, with C : ΣA × P → R. Given the
runtime information p ∈ P, a strategy ρA ∈ MA for the
agent that satisfies ϕ is optimal for p if and only if it is
a solution to the following optimization problem.

minimize
ρA∈MA

C(ρA, p)

subject to ρA |= ϕ
(2)

Let C∗ : P → R denote the optimal value of (2).
Example. Consider Figure 1, where the robot has to

infinitely often meet the human. Assume that the human
can only be in rooms R1,R4,R8. Let q1, q2, q3 ∈ [0, 1] be
the probabilities of the human being in room R1, R4 and R8
respectively. The runtime information is p = [q1 q2 q3]> ∈
P ⊆ R3, where the set P is the probability simplex. The cost
function is,

C(ρA, p) = E[time to find human] =
∑N

i=1
Ti(ρA) qi (3)

where Ti is the time taken to reach room i under the
robot strategy ρA. Figure 2 shows the resulting continuous
trajectories from executing policies when the information
vector tells the robot the exact room occupied by the human.

Given a set of representative strategies associated
with instances of the runtime information, the task
at runtime then becomes one of choosing a strategy
depending on the current value of p. As we have a finite
set of strategies to choose from, the resulting behaviour
of the agent will be approximately optimal. Thus, we
consider the problem of synthesizing an approximately
optimal switching function that also guarantees ϕ.

Definition 1. Given a game structure G and a set of strate-
gies {ρAi ∈ MA}

N
i=1 for the agent, a switching function is

a function τ : Prefs(G) × P∗ → {1, . . . ,N}, which maps a
play prefix and the sequence of values of p seen so far, to an
index of a strategy in the given set.

The set of plays resulting from applying the switch-
ing function τ to {ρAi ∈ MA}

N
i=1 is defined as

the set of plays Plays({ρAi ∈ MA}
N
i=1, τ) such that

π = (g0, σE,0, σA,0, g1)(g1, σE,1, σA,1, g2) . . . ∈ Plays({ρAi ∈

MA}
N
i=1, τ) if and only if there exists γ ∈ Pω such that for

every i ≥ 0, it holds that σA,i = ρAτ(π[0,i],γ[0,i])(π[0, i], σE,i).

Informally, we want to be able to switch between pre-
computed strategies based on values of the runtime
information. In order to not violate the specification,
switching needs to take into account the prefix of the
play. We formalize this task below.

Problem 1. We are given a game (G, ϕ), a set {pi ∈ P}
N
i=1

of representative values of the runtime information, and
strategies {ρ∗Ai ∈ MA}

N
i=1 such that ρ∗Ai solves (2) for pi.

Given ε > 0, compute a collection {Si}
N
i=1 of subsets of Rn

such that pi ∈ Si, and a switching function τ : Prefs(G) ×
P

+
→ {1, . . . ,N} that satisfies the following conditions.
• For all i = 1, . . . ,N and all p ∈ Si ∩ P it holds that

C(ρA
∗

i , p) − ε ≤ C∗(p) ≤ C(ρA
∗

i , p). (4)

• π ∈ ϕ for every play π ∈ Plays({ρAi ∈ MA}
N
i=1, τ).

IV. Synthesis of correct-by-construction strategies
with near-optimality guarantees

We address Problem 1 by constructing a switching
function that guarantees that the resulting plays satisfy
the task specification ϕ. We also provide suboptimality



bounds for the performance when using the proposed
method. We utilize existing synthesis techniques [3]
to synthesize for each i ∈ {1, . . . ,N} a strategy that is
correct, i.e., satisfies ϕ, and optimal for the specific pi.

A. Suboptimality bounds for unknown runtime information
Let {pi ∈ P}

N
i=1 be the given candidate instantiations

of the runtime information, and let {ρ∗Ai ∈ MA}
N
i=1 be the

corresponding optimal strategies. That is, for each i, ρA
∗

i
is an optimal solution of (2) for pi. Under Assumption 2
below, we can compute a collection of polytopes {Si}

N
i=1

such that ρ∗Ai is ε-optimal, whenever p ∈ Si.

Assumption 2. The cost function C :MA×P → R is such
that for all ρA ∈ MA and p = [q1 q2 . . . qn]> ∈ P ⊆ Rn:

C(ρA, p) =

n∑
i=1

C(ρA, ei) qi, (5)

where ei is the vector that has 1 at position i and 0 elsewhere.

We address Problem 1 by defining a collection of
polytopes {Si}

N
i=1, where Si = {p ∈ Rn

| Hip ≤ bi} and

Hi =


C(ρA

∗

i , e1) − C(ρA
∗

1, e1) · · · C(ρA
∗

i , en) − C(ρA
∗

1, en)
C(ρA

∗

i , e1) − C(ρA
∗

2, e1) · · · C(ρA
∗

i , en) − C(ρA
∗

2, en)
...

...
...

C(ρA
∗

i , e1) − C(ρA
∗

N, e1) · · · C(ρA
∗

i , en) − C(ρA
∗

N, en)
C(ρA

∗

i , e1) − C∗(e1) · · · C(ρA
∗

i , en) − C∗(en)


(6)

bi = [0 0 . . . 0 ε]> ∈ RN+1 (7)

with Hi ∈ R(N+1)×n. By (2) and Assumption 2, we have
the following upper bound on C∗(p) for any runtime
information vector p = [q1 q2 . . . qn]> ∈ P,

C∗(p) ≤ C(ρA
∗

i , p) =

n∑
j=1

C(ρA
∗

i , e j)q j, ∀i ∈ {1, . . . ,N}. (8)

Theorem 1 below ensures that using ρ∗Ai for vectors
p ∈ Si results in ε-optimal performance, provided
the polytopes Si are non-empty. In other words, the
difference between C∗(p), the optimal performance for
a runtime information p, and C(ρ∗Ai

, p), the attained
performance due to choice of strategy ρ∗Ai

, can not
be larger than ε, whenever p ∈ Si. To complete the
discussion, we provide a sufficient condition for non-
empty polytopes Si in Proposition 1.

Theorem 1. Let the polytopes Si be non-empty. Given
runtime information p ∈ Rn, if p ∈ Si for some i ∈
{1, . . . ,N}, then

C(ρA
∗

i , p) − ε ≤ C∗(p) ≤ C(ρA
∗

i , p).

Proof. The upper bound on C∗(p) follows from (8).
Consider the collection of polytopes Ti constructed
using the first N hyperplanes in (6) and (7). For every
p ∈ Ti,

C(ρA
∗

i , p) ≤ C(ρA
∗

k, p), ∀k ∈ {1, . . . ,N} \ {i}. (9)

In other words, among the N strategies ρA
∗

(·), ρA
∗

i pro-
vides the tightest upper bound on C∗(p) due to (8).

We next prove the lower bound. The last hyperplane
in (6) and (7) guarantees that C(ρA

∗

i , p)− `
>

p ≤ ε for ev-
ery p ∈ Si, where ` j = C∗(e j). On adding and subtracting
C∗(p), we have C(ρA

∗

i , p) − C∗(p) + C∗(p) − `
>

p ≤ ε. Since
C(·, e j) ≥ ` j by definition of `, we have C∗(p) − `

>

p ≥ 0
for every p ∈ S j. Therefore, C(ρA

∗

i , p) − C∗(p) ≤ ε. �

Proposition 1. Let Assumption 2 hold. For every
i = 1, . . . ,N the polytope Si is non-empty, pro-

vided that ε ≥ maxi

{
C(ρA

∗

i , pi) − `
>

pi

}
. Here, ` =

[C∗(e1) C∗(e2) . . . C∗(en)]> ∈ Rn.

Proof. The polytopes Ti (defined in the proof of The-
orem 1) are non-empty, since they contain pi by the
optimality of ρA

∗

i in (2). The last hyperplane in (6) and
(7) is also satisfied by pi, thanks to the use of ε in bi.
Thus, its intersection with Ti, which yields the polytope
Si, is non-empty. �

B. Switching function construction

In order to guarantee that the plays resulting
from switching between the synthesized representa-
tive strategies satisfy the specification ϕ, the switching
function needs to keep track the satisfaction of the
agent’s liveness guarantees Fi in ϕ. Since the cost
function C captures the cost of achieving the liveness
guarantees, when the specification is satisfied due to a
violation of the environment assumptions, no switch-
ing would be necessary, as the cost would be 0.

To ensure that the switching between strategies does
not prevent the agent from infinitely often visiting each
of the sets Fi, the switching function will keep track
of these visits, and only allow switching to a different
strategy once all the sets Fi have been visited under
the current strategy. Furthermore, the switch can only
occur from a state from which the next strategy can
guarantee the satisfaction of ϕ. Below we make this
intuition precise by providing the construction of the
switching function as a finite-state system.

Let {ρ∗Ai ∈ MA}
N
i=1 be a set of strategies for the agent

such that ρA
∗

i |= ϕ for each i ∈ {1, . . . ,N}, and let {Si}
N
i=1

be the polytopes computed as in Section IV-A.
For each ρ∗Ai, let Wi = {g ∈ G | Plays(G, ρ∗Ai, g) ⊆ ϕ}

denote the set of states from which the specification
can be enforced by following the strategy ρ∗Ai.

We define a finite state transition system with states
Q, initial state q0, transition function θ and alpha-
bet (G × ΣE × ΣA × G) × {S}Ni=1. The set of states is
Q = {V | V ⊆ {1, . . . ,n}} × {1, . . . ,N}, where n is the
number of liveness guarantees in ϕ. States in Q track
the guarantees that have been satisfied and contain
the index of the currently chosen strategy. The initial
state is q0 = ({1, . . . ,n}, 1). The transition function θ :



Q× ((G×ΣE×ΣA×G)×{S}Ni=1)→ Q is defined such that
θ((V, i), ((g, σE, σA, g′),S)) = (V′, i′), where
• if V = {1, . . . ,n},S = S j, g′ ∈W j, then, V′ = ∅, i′ = j,
• V′ = V∪{ j ∈ {1, . . . ,n} | g ∈ F j} and i′ = i otherwise.

That is, once all the sets F j have been visited under
the current strategy, we can switch to the i′-th strategy
and reset the tracking set to ∅. Otherwise we record the
indices of the visited sets and keep the strategy index
the same. We can extend θ to words in the usual way.

We define the switching function such that τ(ε, p0) =
min({i | p0 ∈ Si} ∪ {N}), where ε is the empty word,
and for every π = (g0, σE,0, σA,0, g1) . . . (gk, σE,k, σA,k, gk+1)
and every γ = p0 . . . pk+1 we let τ(π, γ) = i where
θ(((g0, σE,0, σA,0, g1),Si1 ) . . . ((gk, σE,k, σA,k, gk+1),Sik+1 )) =
(V, i) for some V, where for all j ≥ 1 we have i j =
min({i | p j ∈ Si and g j ∈Wi j } ∪ {N}).

As the switching function τ only allows switching
to a different strategy once all F j have been visited
under the current strategy, this means that if we switch
strategy infinitely often then the liveness guarantee is
satisfied. If, on the other hand, we stabilize at some
strategy, ϕ is again guaranteed by the fact that this
strategy satisfies the specification.

C. Discussion

The key advantage of our approach is that we avoid
the re-synthesis of strategies for each new value of
the runtime information, when the parameter set is
covered by the collection of polytopes {Si}

N
i=1, P ⊆

∪
N
i=1Si. We also avoid discretization of the set P. This

enables on-board deployment of our approach with
guaranteed ε-optimal performance. In contrast, tradi-
tional approaches rely either on re-synthesis or on
discretization of the parameter space which requires
either prohibitively high computational or memory
costs [4], [19]. When P * ∪N

i=1Si, none of the synthe-
sized strategies guarantees ε-optimal performance for
the parameter values in P\∪N

i=1Si. In such cases, we can
iteratively expand the candidate instantiations offline
till the entire parameter space P is covered. Specifically,
we add to the candidate instantiations randomly cho-
sen parameter values in P\∪N

i=1Si. In future, we intend
to investigate sufficient conditions under which such
an expansion approach terminates in finite number of
steps.

V. Experiments

All experiments we report on were performed on an
Intel i5-5300U 2.30 GHz CPU with 8 GB of RAM. We
used the tool Slugs [14] for the strategy synthesis.

A. Robot motion planning

We consider the example discussed in Section III
(Figure 1). Formally, the specification is

ϕ = (h ∈ R1∪R4∪R8)→
(

(r = h)∧ (Energy > 0)
)
,

Query point Strategy Cost

p L. bound U. bound C∗(p)

[0.1, 0.8, 0.1] ρA2 7.19 10.4 9.5
[0.0, 0.1, 0.9] ρA3 6.39 9.6 7.9
[0.6, 0.3, 0.1] – – – 11.1

TABLE I: Lower and upper bounds (Theorem 1) and
the optimal value C∗(p) for some runtime information
vectors p.

p1

p2
p 3

p1 = [0.7, 0.1, 0.2]
p2 = [0.1, 0.7, 0.2]
p3 = [0.2, 0.1, 0.7]
Query p’s

Fig. 3: State space partitioning of the runtime infor-
mation vector p for ε = 3.2. For runtime information
vector belong to the darker shaded regions, we obtain
ε-optimality by reusing a specific strategy ρA(·) , and
avoid computationally expensive re-synthesis.

where h and r are variables modelling the human and
robot positions respectively, and Energy is the robot’s
energy level. The cost function C(·) is given in (3). The
runtime information p is the probability distribution
over the human’s possible locations - R1,R4,R8. In our
experiments, we used a Bayesian update to compute
p using the current (and past) observations of the
human’s position.

We used three candidate instantiations of p (Fig-
ure 3). The robot only has enough charge to visit one
of the three rooms and return to the charging station.
The optimal robot strategy for each pi corresponds
to an ordering of which room to visit. Intuitively, the
robot will visit rooms in decreasing order of likelihood
of a human being there, by executing the continuous
trajectories shown in Figure 2.

Figure 3 shows the partition of the space of P
generated from the corresponding polytopes Si for
ε = 3.2. The choice of ε is dictated by Proposition 1.
The three candidate instantiations of p are represented
by colored dots. The darker coloured regions are the
polytopes Si, and they correspond to the regions of P
in which the corresponding strategy is ε-optimal. Note
that P * ∪N

i=1Si, and there are parameters in P were
none of the three strategies are ε-optimal. The light
shaded areas around each pi corresponds to the portion



of the parameter space in which the correspondingly
coloured strategy dominates the others, but is not ε-
optimal.

Table I shows the proposed optimality bounds ob-
tained from our approach (Theorem 1). On compar-
ing with the lowest delay possible (computed via re-
synthesis), we see that the computed bounds holds in
the first two rows. The last row has p = [0.6, 0.3, 0.1]
lying outside ∪N

i=1Si (outside of the dark shaded region
in Figure 3), has no informative bounds. Here, ρA1 is the
dominating strategy among ρA(·) , with C(ρA1 , p) = 13.6.

A video of the simulation of the robot meeting the
human (infinitely often) as the human moves in real-
time can be found at https://youtu.be/pn6afwf5INc.

B. Urban air mobility traffic management
We now consider an automated air traffic manage-

ment system for urban air mobility (UAM) operations.
The controller is required to optimize the throughput
of a multi-pad UAM port, along with bounding the
delays experienced by vehicles and passengers. We
synthesize a controller for a UAM hub, which consists
of a grouping of multiple UAM vertiports. The hub
has restrictions on the number of aircraft it is allowed
to simultaneously land across all vertiports. Hence, a
controller, if necessary, must make incoming air vehi-
cles wait until it is able to safely allow them to land. In
this example, we consider three vertiports — A (red), B
(yellow), and C (blue) where an aircraft can request to
land. Formally, the task specification is

ϕ = (Current Requests < R)→
(No. Landing Aircraft < M) ∧
(Land Request→ Land Allowed),

where R is maximum number of simultaneous requests
and M is the maximum number of aircraft allowed
to land simultaneously. We model incoming aircraft
as landing requests for vertiports drawn from a time-
varying probability distribution. We model the perfor-
mance metric as the maximum delay. The cost function
is

C(ρA, p) = max
i

(delay(Vi, ρA)) · qi (10)

where p = [q1, q2, q3, q4], qi is the probability of a request
to land at vertiport hub Vi for i = {1, 2, 3}, and q4 is
the probability of no landing request, and delay(Vi, ρA)
is the processing delay at Vi under strategy ρA. We
pre-compute strategies for three representative instan-
tiations of the runtime information with each strategy
taking 213 s to compute. Initially, we choose the true
distribution to be one of the instantiations. At t =
150 minutes, the underlying probability distribution
of landing requests changes such that the uninformed
strategy performs poorly and the new probability value
is not part of any of the representative instantia-
tions. At t = 400 minutes, the probability distribution
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Fig. 4: Top: Average maximum delay times for N = 100
runs with landing requests drawn from a time varying
probability distribution shown in bottom figure. Black
vertical lines corresponds to a switch in strategy. Below:
The probability of an aircraft requesting to land at hubs
A (red), B (yellow), C (blue), or not land (green).

switches back to the initial probability distribution. The
uninformed strategy is a fixed, runtime information-
independent strategy that satisfies ϕ.

Figure 4 compares the proposed switching strategy
against an optimal strategy that relies on re-synthesis
(requires heavy computation) and an uninformed strat-
egy (does not incorporate runtime information). Ini-
tially, during low traffic times, we see no deviation
in delay times as expected. The proposed switching
strategy provides a significant reduction of delay over
time compared to an uninformed strategy. However, it
is suboptimal to the strategy obtained via re-synthesis,
which relies on heavy computation that rules out real-
time execution. Since (10) does not satisfy Assump-
tion 2, we do not have suboptimality bounds on the
performance (Theorem 1). Empirically, the proposed
approach shows an improvement in performance.

VI. Conclusion and future work
We present a method to integrate information about

environment behaviour gained at runtime into reactive
synthesis. Our technique provides significant perfor-
mance gains over standard reactive synthesis without
sacrificing any correctness or facing state space explo-
sion. In future work we intend to investigate the use
of counterexamples to generate more candidate instan-
tiations of runtime information parameters in order to
guarantee ε-optimality over the entire parameter set P.

https://youtu.be/pn6afwf5INc
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