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In this paper we investigate lossy channel games under ipleaeninformation, where two players
operate on a finite set of unbounded FIFO channels and onerptapresenting a system component
under consideration operates under incomplete informatitnile the other player, representing the
component’s environment is allowed to lose messages frerahthnnels. We argue that these games
are a suitable model for synthesis of communication prdsostere processes communicate over
unreliable channels. We show that in the case of finite mesahghabets, games with safety and
reachability winning conditions are decidable and finife observation-based strategies for the
component can be effectively computed. Undecidabilityfegak) parity objectives follows from the
undecidability of (weak) parity perfect information ganvesere only one player can lose messages.

1 Introduction

Lossy channel systems (LCSs), which are finite systems canwating via unbounded lossy FIFO
channels, are used to model communication protocols sudihkaprotocols, a canonical example of
which is the Alternating Bit Protocol. The decidability ofnification problems for LCSs has been well
studied and a large number of works have been devoted toagenglautomatic analysis techniques. In
the control and synthesis setting, where games are theahatmputational model, this class of systems
has not yet been so well investigated.(Ih [1], Abdulla et stablish decidability of two-player safety and
reachability games where one (or both) player has downwiaxskd behavior (e.g., can lose messages),
which subsumes games with lossy channels where one plagertifie environment) can lose messages.
They, however, assume that the game is played under panfeatiation, which assumption disregards
the fact that a process has no access to the local statesesfitbcesses or that it has only limited
information about the contents of the channels. To the Hestirknowledge, games under incomplete
information where the players operate on unbounded ubielzhannels have not been studied so far.
We definelossy channel games under incomplete informatod show that in the case of finite
message alphabets, games with safety and reachabilityngisonditions are decidable and finite-state
observation-based strategies for the player who has inleenipformation can be effectively computed.
Algorithms for games under incomplete information cargyaut an explicit knowledge based subset
construction([9] are not directly applicable to infinitexst games. Symbolic approaches [4] are effective
for restricted classes of infinite-state games like discgatmes on rectangular automata [5]. The sym-
bolic algorithms that we present in this paper rely on the obamicity of lossy channel systems w.r.t. the
subword ordering, which is a well-quasi ordering (WQO)sltiell known that upward and downward-
closed sets of words used in the analysis of lossy channigragsan be effectively represented by finite
sets of minimal elements and simple regular expressionsd@pectively. Unsurprisingly, the procedures
for solving lossy channel games under incomplete inforomatinat we develop manipulate sets of sets of
states. Thus, our termination arguments rely on the fatthiessubword ordering is in fact a better-quasi
ordering (BQO)[[7| 8], a stronger notion than WQO that is preed by the powerset operation [6].
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Figure 1: A communication protocol with partially specifiRe8 CEIVER process. For processEREIVER

we haveXy = {ap,a1,bo, by, u} andz5 = {bg,b; }. The property that the implementation must satisfy is
that location 4 in ENDER is not reachable, i.e., the receiver does not acknowledgsanes that have
not been sent, and once all messages and acknowledgenuoenigrévious phases have been consumed,
the receiver can only send one delayed acknowledgement tNat by using an extra channel and an
extra location in processHCEIVER we can ensure that the error location is in processiRVER.

2 Lossy Channel Games under Incomplete Information

Lossy channel systems are asynchronous distributed systemposed of finitely many finite-state pro-
cesses communicating through a finite set of unbounded FHa@nels that can nondeterministically
lose messages. We consigrrtially specified lossy channel systemere the term partially specified
refers to the fact that we consider a second ("friendly”)etyb nondeterminism, in addition to the ("hos-
tile”) one due to the model. More specifically, this secongetyf nondeterminism modeisiresolved
implementation decisiorthat can be resolved in a favorable way. We consider the chee these de-
cisions are within a single process, and thus we can w.lasgume that the system consist of only two
processes: the process under consideration and the pacatiposition of the remaining processes.

Definition 1. A partially specified lossy channel system (L&) tuple.Z = (2, ¢4,C,M,Z0,21,23),
where for eaclprocess identifier g {0,1}, < is a finite automaton describing the behavior of process
p, C is a finite set ofchannels M is a finite set ofmessagess = SyUZ; is the union of the disjoint
finite sets otransition labelsfor the two processes, and C % is a subset of the labels of tipartially
specified process#. The automaton, = (Qp,q?),c‘ip) for a processp consists of a finite seR, of
control locations aninitial location q% and a finite sed of transitions of the form (qg,a, Gr,Op,d'),
whereq,q € Qp, a€ Zp, Gr:C — {true, (=€), (m-M*) [me M} andOp: C — {Im,?m,nop| me M}.
Intuitively, the functionGr maps each channel to a guard, which can be an emptiness test,od the
letter at the head of the channel or the trivial gutge. The functionOp gives the update operation for
the respective channel, which is either a write, a reaabpy which leaves the channel unchanged.

Example. Fig[d depicts a partially specified protocol consistingweb fprocesses, ENDER and Re-
CEIVER, communicating over the unreliable channKlsand L. Process BNDER sends messages to
RECEIVER over channeK and RECEIVER acknowledges the receipt of a message using chanmébte
that we use guards that test channels for emptiness or &eftdhletter of their contents.

The two processes are represented as nondeterministe-gtatie automata. ProcessN®ER es-
sentially runs the Alternating Bit Protocol. Processd®IVER, however, is onlypartially specified
its alphabet of transition label, = {ag, a1, bo,b1,u} is partitioned according to the unresolved deci-
sions in the process specification: The suldset {bg,b;} of controllable transition labels specifies the
unresolved implementation decisions, namely what bit tedsg on channdl at location 1.
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The property that the protocol must satisfy is encoded asitiheachability of location 4 in process
SENDER. However, the automata can easily be augmented (with aa elinnel and an error location
in process RCEIVER) in a way that the error location is in processEEIVER. The property states that:

1. the receiver does not acknowledge messages that haveceotdent, that is in location 2 in
SENDERthe language df is 0 and in location 0 in ENDER the language df is 1*,

2. once all messages and acknowledgements trailing fromiopie phases have been consumed (or
lost), the number of delayed acknowledgements the recearesend is bounded by one.

A configurationy = (qo, 01,w) of . is a tuple of the locations of the two processes and a function
w: C — M* that maps each channel to its contents. THikal configurationof £ is y° = (¢, P, ¢),
whereg(c) = € for eachc € C. The set of possible channel valuation®Vis= {w |w:C — M*}.

Thestrong labeled transition relatior+C (Qo x Q1 x W) x X x (Qp x Q1 x W) of .# consists of alll
tuples((go, o1, W), a, (g, o, W)) (denoted g, a1, W) N (0o, o, W) such thatifa€ Zp, thengy_, =d1—p
and there is a transitiofp, a, Gr,Op,qp) € & such that for eack € C all of the following conditions
hold: (1) if Gr(c) = (¢ m-M*) thenw(c) € m-M*, (2) if Gr(c) = (= €) thenw(c) = &, (3) if Op(c) =!m,
thenw/(c) = w(c)-m, (4) if Op(c) =?m, thenm-w'(c) = w(c), and (5) ifOp(c) = nop, thenw/(c) = w(c).

Let < denote the (not necessarily contiguous) subword relatiod tand let us define its extension
to elements ofV as follows:w; < ws for wy, w, € W iff wy(c) < w,(c) for everyc € C.

The weak labeled transition relatior>C (Qp x Q1 X W) x Z x (Qp x Q1 x W) for . is defined
as follows: (0,q1,W) = (gp,dy,W) iff there existw; and w, such thatw; < w andw < w, and
(0o, 01, W1) 2 (O, o, W2), i-e., the channels can lose messages before and afterttiad aansition.

Definition 2 (LC-game structure with incomplete informatior)et ¥ = (2%, 1,C,M,%0,%1,%3) be

a partially specified LCS, an@,,s C C be a set ofobservable channelthat includes the set of all
channels occurring in guards or read operationsgnThelossy channel game structure with incomplete
informationfor . andCopsis ¥4 (.Z,Cobs) = (S, —¢,C,M, 20,21, %3,Cops), Where:

e The set ofstatesof ¥ is S= {0,1} x Qp x Q1 x W. The first componenp of a state(p, qo, gz, W)
identifies the process to be executed and the remaining owesle the current configuration of
. The set of initial states of is | = {(p,do,q1,W) | p€ {0,1}, o =03, g1 =2, w= €}.

e The labeled transition relations ¢C Sx ¥ x Sand=4C Sx = x Sof ¢ are defined as follows:
for statess = (p,qo,th,w) ands = (p’,q,,q;, W) anda € = we haves —a>g s iff ae X, and
(90, G1,W) > (g, g, W), and we haves ==, < iff ac ¥, and(qo, o, W) = (), o, W).

Remark. The first component of states $is used to model the interleaving semantics and is updated
nondeterministically in the transition relatierg (and=-4). For simplicity, in Definition 2 we do not
make any assumptions about the nondeterministic choicéhimhwprocess to be executed. One natural
assumption one might want to make is that the selected ocest have at least one transition enabled
in the current state. This and other restrictions can bdyaagbosed in the above model.

For the rest of the paper, |&f = 9(.Z,Cops) = (S1,—¢,C,M,30,21,35,Cops) be the LC-game
structure with incomplete information for a partially spexl LCS_Z and observable channelgps

Player; plays the game under incomplete information, observing eeftain components of the
current state of the game. Udtps= Cops— (MU {€}) andObs= {0,1} x Qp x Hops Theobservation
function obs S— Obsmaps each state= (p,do,01,W) in ¢ to the tupleobss) = (p,do,h) of state
components observed Blayer;, where for eactt € Copg, if p =1, thenh(c) = € and otherwise if
w(c) = €, thenh(c) = € and ifw(c) = m-w for someme M andw € M*, thenh(c) = m. That is, when
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p = 0 we have forc € Cyps thath(c) is the letter at the head @f(c), whenc is not empty. Foo € Obs
we denote witlState$o) = {s € S| obgs) = o} the set of states whose observation.is

Let S = {(p,qo,01,W) € S| p= 0} be the states where process 0 is to be execute®andS\ .

The game? is played byPlayer, andPlayer, who build up a playssagaesiajas - .., which is se-
quence of alternating states $labels inZ3 = 35U {1} and labels irz, starting with a stateg € 1.
Each time the current state is 8, Player; has to choose a label from the &etu {_L}, that is either
a label fromZ of a transition enabled in the current state, or can be thei@psgementL in case no
transition with label in=5 is enabled or if there exists an enabled transition withllfoen 2\ 5.

Let Enabled(s) = {a€ 35| 35. s34 5}. Note that for states;,s, € S with obgs;) = obgs;) = 0
it holds thatEnabled(s;) = Enabled(sp), and, abusing notation, we denote this set Withbled(0).

For an observatiom = (0,0, h), the setAct;(0) = (Enabled(0) NX3) U {L | Enabled(0) NZ5 =
0 or Enabled(0) N (Zo\ Z3) # 0} consists of the transition labels tHallayer; can choose in a setc §
with obgs) = o. For a label® € 55, the setActy(0,a”) = ({a’} N Z3) U (Enabled(0) \ £3) consists of
the transition labels whicRlayer, can choose when the current choicePtdyer, is a’.

The play is built byPlayer, respecting the choices dtlayer; and the transition relatiorsg.
Whens € S, thena? € Acts(obgs)) is the transition label chosen Blayer; after the play prefix
Sodgaosiday ... & ;& 1S anda € Acty(obgs),a’). After Player; has made his choic®layer, re-
solves the remaining nondeterminism by choosingnd the successor stae; to extend the play.

A playin ¢ is a sequence = Sagaps13;a1S1 - - € (S (23 -2-9*US (25 -2-9)¥) such thatp € I,
for everyi > 0 it holds thats £a‘>'g S.1,and ifs € S, thena? = L, and ifs € & thena? € Acty(obys))
anda; € Acty(obgs),a?). A play rtis finite iff last(7) has no successor i#i, wherelast(m) € Sis the
last element oft. The setPrefs(¥) C S- (25 - Z- S)* consists of the finite prefixes of playsdf and we
denote withPrefs3(¥) = {mme Prefs(¥) | last(m) € S} the set of prefixes ending B.

A strategy for Playey is a total functionfs : Prefs3(¢) — 25 such thatf;(1) € Acts(obglast())).

The outcome of a strategys fis the set of playOutcome(f3) such thatrm = spagapsiaja; ... €
Outcome( f3) iff for every i > 0 with s € S it holds thata? = f5(spagapsiajas ... s).

We define a functiombs' : Prefs3(4) — (Obs: Zy)* - Obsthat maps a prefix ifPrefs3(¢) to the se-
guence of state and action observations madelayer;: obs' (ssajaps1a;a; . . . S,) = 0bs(sp) -obs(ap) -
obs(s1)-0bs(ay)...-obs(s,), where fors € S we defineobs(s) = obg(s) if s€ § andobs(s) = € oth-
erwise, and foa € = we defineobs(a) = aif a € £y andobs(a) = ¢ otherwise.

We call a strategyf5 for Player; obs™-consistentf for every pair of prefixess and s in Prefs3(9)
for which obs™ (1) = obs™ (&) holds, it also holds that; (1) = f3(®).

We are interested ifinite-statestrategies foPlayer;, that is, strategies that can be implemented as
finite automata. A finite statebs"-consistent strategy fdPlayer; in ¢ is one that can be represented
as a finite automaton/s = (Qs, 2, (Qo x Hobs) X (25 x Zo), p) with alphabet Qo x Hops) X (25 x Zo),
whose transition relatiop C (Qs x ((Qo X Hopbs) X (23 x Zo)) x Qs) has the following properties:

(i) foreachqe Qs, 0€ Qo x Hops & € 22, a€ 3o, andqy, @, € Qs, it holds that if(q, (o, (a%,a)),q)) €
p and(q, (o, (a’,a)),d,) € p, theng] = dj (i.e., the transition relatiop is deterministic),
(i) for eachq € Qsando € Qp x Hopsthere exist® € 3, ac 3, g € Qswith (g, (0, (a°,a)),q) € p,
(ii) if (g, (0, (a%,&)),q}) € p anday € Act,((0,0),a”), then(q, (o, (a°,a2)),d,) € p for someg,, € Qs,
(iv) if (g, (0,(aq,a1)),0y) € p and(q, (0,(a3,82)), ) € p, thenai = a3.
The automaton#s defines arobs™-consistent strategys for Player;. According to the properties

of ./, for eachrt € Prefs5(%) with obs™ (71) = 0pag01a; . ..0n_13,_10, there exists a unique sequence
apgaja ;€ Zﬁn such that there is a run ofs (also unique) on the worthagap018;a; - . . On-183_;8n-1.
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Let g be the last state of this run. We then defiia¢m) = a°, wherea® € 2 is the unique label that
exists by conditiongii) and (iv) such that there ar@< % andq € Qs such that(q, (o, (a°,a)),q) € p.

We now turn to the definition of winning conditions in LC-gasnender incomplete information. We
considersafetyandreachabilitywinning conditions foPlayer; defined by visible sets of states$h A
setT C Sisvisibleiff for every s T and everys € Swith obgs') = obgs) it holds thats' € T.

A safety LC-game under incomplete informatkxfety(¢,Err) is defined by a LC-game structure
with incomplete informatior¥ and a visible seErr of error states tha®layer; must avoid. A strategy
f5 for Player; is winningin Safety(¢,Err) iff no play in Outcome( f5) visits a state irErr.

Note that according to this definitioRJayer; wins finite plays that do not reach an error state. If we
want to ensure that plays reaching a stat@ ithat corresponds to a deadlock #i are not winning for
Player;, we can easily achieve this by appropriately instrumentifigndErr.

A reachability LC-game under incomplete informatiBeach(¥¢,Goal) is defined by a LC-game
structure with incomplete informatio# and a visible seGoal of goal states tha&layer; must reach. A
strategyf; for Player; is winningin Reach(¥¢,Goal) iff each play inOutcome( f5) visits a state irGoal.

Remark.The definition of visible sets allows th&trr NS, # 0 andGoalN'S; # 0. Thus, our definition
of visible objectives does not require that for each pairlef/pm and e with obs’ (1) = obs’ (&)
(whereobs' is defined for plays analogously to prefixes) it holds tRktyer; wins 7z iff he wins 7s.
For the algorithms, which we present in the next sectionsfitving safety and reachability LC-games
under incomplete information, the objective felayer; does not have to satisfy this condition.

3 Algorithms for Solving Safety and Reachability Games

Better-Quasi Orderings. The subword orderingg on M* is a WQO (and so is the ordering on W
defined earlier). That means, it is a reflexive and transr@l&tion such that for every infinite sequence
Wo, W1, ... of elements oM™ there exist indices & i < j such thaw; < w;.

The subword ordering (as well as other WQOs commonly usedrification) is in fact also a BQO,
and so is the ordering dW/. Hence they are preserved by the powerset operation. Hemmitethe
precise definition of BQOSs since it is rather technical arid itot necessary for the presentation of our
results. When needed, we recall its properties relevardadoarguments.

We extend= to a BQO= on the seS of states irn# in the following way: fors= (p,qo,q1,W) € S
ands = (p',qp,q;,W) € S we haves < s iff p=p/, go = qp, th = ¢, obgs) = obgs') andw < w'.

A setT C Sis upward-closedrespectivelydownward-closeyiff for every se€ T and everys € S
with s < s (respectivelys’ < s) it holds thats € T. The upward-closure of a s&tC Sis T t= {s €
S| 3s.se T ands < §'}. For each upward (respectively downward) closedTset Sando € Obs the
setT’ = {se T | obgs) = o} is also upward (respectively downward) closed. WeZtgis(S) = {u C S|
u#0, u=ut anddo € ObsVs e u. obgs) = 0} and foru € Zyns(S) we defineobgu) in the obvious
way. The setZyns(S) andobs: Zops(S) — Obsare defined analogously, requiring that the elements are
downward-closed instead of upward-closeéefi’(S) is the set of finite sets itops(S).

The transition relatiors4 enjoys the following property: i§ :a>g s ands=<¢’, thens’ :>ag s. Thus,
the set of predecessors w.r.t. some X of any set of states is upward-closed. For LCSs the set of
successors w.r.t. songe= X of any set of states is a downward-closed set.

LetPre: 2(S) x Z — 2(S) be the function defined @&re(T,a) = {s€ S| 38 € T. s=24¢} and let
Post : 2(S) x = — P(S) be the function defined @st(T,a) = {sc S| 3 € T. ¢ =4 s}. As recalled
above, for eacll C Sand eacta € Z, Pre(T,a) is upward-closed anBlost(T,a) is downward-closed.
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We define the functionBreq : Zobs(S) X Zo — Piin(%ons(S)) andPres : Zops(S) — Pfin(%obs(S))
that map a setl € Z(S) to a finite set of upward-closed sets that partition the respmeset of pre-
decessors ofi according to the observatiordayer; makes. FormallyPreg(u,a) = {U' € Zops(S) |
Jo € Obs U = Pre(u,a) N State$o) } andPrei(u) = {U' € Zps(S) | 30 € Obs U = (Uaes, Pre(u,a)) N
Statego)}. Similarly, using the functiorPost above, we can define the successor functiBost :
Dobs(S) X Zo — Psin(Zobs(S)) andPosty : Zops(S) — Pin(Zobs(S)). Since the transition relation &f
has finite branching, ifl € 2{n(S) thend’ € #fin(S) for d’ € Posto(d,a) or d’ € Post;(d).

When analyzing LCSs, upward-closed sets are typicallyessprted by theiinite sets of minimal el-
ementsand downward-closed sets are representesirhple regular expressiond hese representations
can be extended to obtain finite representations of elenuéritg,s(S) and Zops(S). By the definition
of < on S each visible set of states is upward-closed, and hencesets& rr andGoal in safety and
reachability games are finitely representable. In the vesaissume that they are represented such a way.

Our termination arguments rely on the following propertgr Every BQO= on a selX, the superset
relation2 is a BQO on the set of upward-closed sets#iX) and the subset relatian is a BQO on the
set of downward-closed sets. This implies that a BQO onZops(S) and thatC is a BQO onZgps(S).

LC-games under incomplete information with safety objectves. We describe a decision procedure
for safety LC-games under incomplete information whichadsda on a backward fixpoint computation.
Each step in the fixpoint computation corresponds to a stepeirgame, which is not necessarily
observable bylayery. Thus, this construction is correct w.Rtlayer; strategies that ar@bsconsistent,
where, intuitively, the functio@smaps a prefix to a sequence that includes also the (triviahrohtions
of S states, andbsconsistency is defined analogouslydios™-consistency. To avoid this problem, our
algorithm performs the fixpoint computation on a LC-gamedtire with incomplete informatiofy’
obtained from¥ by adding anidle transition for process 1. This game structure has the following
property: Player; has anobs'-consistent winning strategy in the gardafety(¢,Err) iff Player; has
anobsconsistent winning strategy anety(g ,Err), which yields correctness of the algorithm.

Formally, the functionobs: Prefs3(¢) — (Obs - Zp)* - Obs is defined as:c%s(soagao...sn) =
obsg(sp) - obg(a) - ... - obg(s,). The game structuré is the tuple? = (S1,=4,C,M,Z0,%1,%3,Cobs)
wherez; = 5, U {idle} andidle ¢ %, and—g = —¢ U{((1,0o,q1, W), idle, (p',0o,q1,W)) | P’ € {0,1}}.

We define the se¥/’(S) for Sas.Z(S) = {l € Pin(%obs(S)) || # 0 and3o € ObsVu e l. obgu) = o}
and defineobgl) for eachl € .Z(S) in the obvious way. We provide a fixpoint-based algorithnt tha
computes a s C .Z(S) such that each e B has the following property: iK C Sis the set of states
that the game can be currently in accordindPtayer;’s knowledge and& Nu # 0 for everyu € |, then
Player; cannot win when his knowledge k5. Considering the sdtof initial states, if for somé € B it
holds that Nu# 0 for allu € |, thenPlayer; has noobs™-consistent winning strategy Bufety(¢,Err).

Our procedure computes a sequeBge_ B; C B;... of finite subsets of#(S). The computation
starts with the seBy = {{Err N State$o)} | o € Obs}. Fori > 0, we letB; 1 = B UN;;+1, where the set
Ni+1 of new elements is computed basedByrand is the smallest set that contains elach? (S) which
is such that C Uy e, e ((Uaes, Preo(U,@)) UPreg (U')) and:

o if | € 2(P(S)) then for every possible choi@ € Act;(obg(l)) of Player,, there exist an action
ac Act,(obgl),a°) andl’ € B; such that for every’ € I’ it holds thatPreg(u/,a) N1 # 0,

o if | € Z(2(S)) then there existE € B; such that for every’ € I it holds thatPre1(u') N1 # 0.

The orderingC on .Z(S) is defined such that fdtl’ € £ (S), we have C I’ iff for every u € | there
exists au’ € I’ such thau D U. The ordering_ is a BQO, sinced is a BQO onZ4ps(S). Intuitively, if |
belongs to the set of elements.&f(S) in which Player; cannot win, so does evetywith | C 1’
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We say that the sequenBg, B1,B;. .. converges at K Min(By.1) C Min(By), whereMin(B;) is the
set of minimal elements d; w.r.t. C. This condition can be effectively checked, since eBgis finite.
We argue that there existska> 0 such that the sequence computed by the procedure desealibed
converges & (and hence the procedure will terminate).

Let Ry, F1,F, ... be the sequence of upward-closed element$?¢fZ (S)) whereF = B; 1 for each
i >0. Asky,F1, ... isa monotonically increasing sequence of upward-closexb$elements afZ(S),
it must eventually stabilize, i.e., there ik& 0 such that. 1 C F. Thus, sincd5,1 C F if and only if
Min(Bi;1) C Min(B;), the sequencByp,B;,Bs5... is guaranteed to converge at sokne 0.

Proposmon 1. Let B= By, where the sequencep B, By... converges at k. Then, Playehas an
obs-consistent wmnlng strategy&afety(% Err) iff for every | € B there exists & | withun| = 0.

If Player; has anobs-consistent winning strategy $rafety(€4 Err), then Playes has a finite-state

obs'-consistent winning strategy in the original gassfety (¢, Err).

Proof Idea. A counterexample tree fé‘fafety(% Err) represents a witness for the fact tRéadyer; does
not have arobsconsistent winning strategy Esnfety({f Err). Itis a finite tree with nodes labeled with
elements 0&qps(S). If there is @ € B such thaun| # 0 for everyu € |, a counterexample tree can be
constructed in a top-down manner. For the other directioraveshow by induction on the depth of the
existing counterexample trees that there exidts 8 such thaun| # 0 for everyu € |.

For the case wheRlayer; wins the gameSafety(E?, Err) we can construct a finite-states’-
consistent winning strategy f@layer; in the gameSafety(¥¢,Err) by using as states for the strategy
automaton functions from observations to a finite’ 8et %, (Z(S)) each of whose elements pre-
serves the invariant that for evelrg B there exists a < | such thaunJyeo, v=0. O

LC-Games under incomplete information with reachability objectives. For reachability games

we give a procedure based on forward exploration of the dettates representing the knowledge of

Player; about the current state of the game. Siftayer; can only observe the heads the observable

channels, his knowledge at each point of the play is a finitensard-closed set, element Obs(S)

To update this knowledge we define functioPsstd™ : 7fin(S) x 3 — P (2f0(S)) and Post$®s:

P80 (S) — Prin(Zf0(S)) that map a setl € Z{(9) to a finite set of elements a¥/ny(S), each of

which is a set of states thétlayer; knows, accordlng to his current observation, the game may be

in after (a transition fron¥, and) a sequence of transitions fré. For eachd ¢ 9“” «(S) we have

d’ € Post3?S(d, a) (respectivelyd’ € Post3(d)) iff there exists a sequendl, ds, ... ,d, € Qf'“( S) such

thatdy € Posto(d, a) (respectivelydy = d), for every 1< i < nit holds thatd;_1 C § andd; € Post;(d;_1),

and for every 0< i < j < nit holds thatd;, Z d; and one of the following conditions is satisfied: (1)

d’ C Goal, d =dypandn=0 (i.e.,d’ C Goaln ), or (2) there exists a £ i < n such thad;, C d, and
=d, (i.e.,d' € S), or (3)d = {(0,0qp,q;,W) | (1,05,0, W) € ULodi} (i.e.,d' C S).

We construct a finite set of trees rooted at the differentiptesknowledge sets fdplayer; at location
a8. The nodes of the trees are labeled with knowledge setswiith elements ofZf"(S). The edges
are labeled wit pairs of transition labels, i.e., eIemerﬁtE%ox 20, Where the first element of a pair is a
possible choice dPlayer; and the second element is a corresponding choi¢dayfer, .

Formally, the forward exploration procedure construct®r@gt.7 in which the roots are labeled
with the sets{(0,03,qf,&)} and all the setsl € Post$*S({(1,03,00,€)} \ Goal). At each step of the
construction an open leaf nodewith labeld is processed in the following way:

e If d C Goal, we close the node and do not expand further from this node.

e If d Z Goal and eithed C § and there exists an ancestomahat is labeled witld’ and such that

d Cd, ord C S, we close the node and do not expand further from this node.
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e Otherwise, we add the set of successons 66r eacha’ € Acts(obg(d)), eacha c Act,(obgd),a”)
and eachd’ e Post3"(d,a) we add exactly one successurlabeled withd’ and label the edge

(n,n') with (a’,a). The set of successors fta,a) is denoted witrChildren(n,a’, a).

The finite branching of the transition relation @fand the fact that is a BQO onZ/n(S) imply
that each of the seBost3?5(d,a) and Post3S(d) can be effectively computed, the set of roots and the
out-degree of each node are finite, and the above procedumgétes constructing a finite forest.

We label each node in .7 with a boolean valuevin(n). For a leaf noden with d(n) C Goal, we
definewin(n) = true and for any other other leaf nodewe definewin(n) = false The value of a non-
leaf node is computed based on those of its children by ireéng the choices dPlayer; disjunctively

and the choices oPlayer, conjunctively. Formally, for every non-leaf nodewe definewin(n) =
vaaeActg(obs(d(n))) /\aeActv(obs(d(n)),aﬂ) /\n/eChiIdren(n,aia) Win(n’), Whered(n) is the set of states Iabellrrg

Proposition 2. Player; has an ob$-consistent winning strategy iReach(%, Goal) iff for every root n
in 7 it holds that wir{n) = true. If Player, has an obs-consistent winning strategy Reach(¥¢,Goal),
then he also has a finite state dbsonsistent winning strategy Reach(¢,Goal).

Proof Idea. If all the roots are labeled wittrue we can construct a finite-statds’-consistent strategy
winning for Player; in Reach(¢,Goal), by mapping each prefix iRrefs3(¢) to a label inZZ, deter-
mined by a corresponding path.ifi and a fixed successful choice at its last node, if such patlctaside
exist, or given an appropriate default value otherwise.tR@other direction we suppose that some root
is labeled withfalseand show that for angbs’-consistent strategys; for Player;, we can use the tree
to construct a playr € Outcome( f3) that never visits a state i@oal. O

LC-games under incomplete information with parity objectives. We now turn to more general
w-regular visible objectives foPlayer; where the undecidability results establishedlin [1] forfeer
information lossy channel games in which only one playerloaa messages, carry on to our setting.

A visible priority function pr: Obs— {0,1,...,n} for natural numben € N maps each observa-
tion to a non-negative integer priority. For an infinite play= soa?)aoslaﬁal... we definepr(m) =
min{pr(o) | o € InfObg 1)}, whereInfObg 1) is the set of observations that occur infinitely ofterrin
and definewpr(11) = min{pr(oby%)),pr(obgs;)),...}. A parity (respectivelyweak parity LC-game
under incomplete informatioRarity(¥, pr) (respectivelyWeakParity¥,pr)) is defined by a LC-game
structure with incomplete informatio# and a visible priority functiompr. A strategyfs for Player; is
winningin the parity gaméarity(¢, pr) (weak parity gam&VeakParity¥, pr)) iff for every infinite play
1t € Outcome( f3) it holds thatpr () is even (respectivelwpr(m) is even).

Proposition 3. The weak parity game solving problem for LC-games undemnpdete information, that
is, given a weak parity LC-game under incomplete infornmateakParity</, pr) to determine whether
there exists an obsconsistent winning strategy for Playgin WeakParity%, pr), is undecidable.

Proof Idea. In [1] it was shown that in the perfect information setting thveak parity problem for B-
LCS games, which are games played on a finite set of chann&bich player A has a weak parity
objective and only player B is allowed to lose messages, dgecidable. Their proof (given for A-LCS
games but easily transferable into a proof for B-LCS game$gased on a reduction from the infinite
computation problem for transition systems based on losapmel systems, which is undecidable [3].
We argue that this reduction can be adapted for our framewatk Player; in the role of player A
andPlayer; in the role of player B. The fact that heRdayer; choses only transition labels and plays
under incomplete information does not affect the proof fet @S games, since there player A just
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follows passively, while player B simulates the originast®m. The values of the priority function used
in [1] do not depend on the contents of the channels. Thusawelefine a visible priority function. O

As a consequence, the parity game solving problem for LCeganmder incomplete information is
undecidable as well. As noted inl[1], the construction frdm proposition above can be used to show
undecidability of A-LCS and B-LCS games with Biichi and cideBi objectives.

Summary of the results. The results of the paper are summarized in the followingrémeo
Theorem 1. For lossy channel game structures with incomplete inforomat
e games with visible safety or reachability objectives foayi; are decidable, and when Player
has an observation-based winning strategy, a finite-staté strategy can be effectively computed,
e games with visible weak parity objectives for Playare undecidable.

4 Conclusion

We showed that the game solving problem for LC-games undemiplete information with safety
or reachability objective foPlayer; is decidable. LC-games under incomplete information withren
general winning conditions, such as weak parity (as welliashBand co-Biichi) condition can easily be
shown to be undecidable, using a reduction similar to thedaseribed in[1] for A-LCS games (which
are perfect information games defined on LCSs in which oné/mayer can lose channel messages). An
orthogonal extension that is also clearly undecidable égngalized control. This implies that suitable
abstraction techniques are needed to address the synthalsism within these undecidable settings.
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